Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation
Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the cur...
Ausführliche Beschreibung
Autor*in: |
Dutta, Soumi [verfasserIn] Patel, B.G. Maya [verfasserIn] Singh, Yashraj [verfasserIn] Hegde, Gurumurthy [verfasserIn] Bose, Suryasarathi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of membrane science - New York, NY [u.a.] : Elsevier, 1976, 694 |
---|---|
Übergeordnetes Werk: |
volume:694 |
DOI / URN: |
10.1016/j.memsci.2024.122422 |
---|
Katalog-ID: |
ELV06683063X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV06683063X | ||
003 | DE-627 | ||
005 | 20240203093037.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240203s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2024.122422 |2 doi | |
035 | |a (DE-627)ELV06683063X | ||
035 | |a (ELSEVIER)S0376-7388(24)00016-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
084 | |a 58.11 |2 bkl | ||
100 | 1 | |a Dutta, Soumi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. | ||
650 | 4 | |a Interpenetrating polymer networks | |
650 | 4 | |a Metal-organic framework | |
650 | 4 | |a Polyoxometalate | |
650 | 4 | |a Photocatalytic membrane | |
650 | 4 | |a Self-cleaning | |
650 | 4 | |a Water treatment | |
650 | 4 | |a Antimicrobial | |
700 | 1 | |a Patel, B.G. Maya |e verfasserin |4 aut | |
700 | 1 | |a Singh, Yashraj |e verfasserin |4 aut | |
700 | 1 | |a Hegde, Gurumurthy |e verfasserin |4 aut | |
700 | 1 | |a Bose, Suryasarathi |e verfasserin |0 (orcid)0000-0001-8043-9192 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of membrane science |d New York, NY [u.a.] : Elsevier, 1976 |g 694 |h Online-Ressource |w (DE-627)302468927 |w (DE-600)1491419-0 |w (DE-576)259483907 |x 0376-7388 |7 nnns |
773 | 1 | 8 | |g volume:694 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.11 |j Mechanische Verfahrenstechnik |q VZ |
951 | |a AR | ||
952 | |d 694 |
author_variant |
s d sd b m p bm bmp y s ys g h gh s b sb |
---|---|
matchkey_str |
article:03767388:2024----::htctltcrvneflaigpmmrnsnuewtaotuspicnitnomtlraifaeoknasltd |
hierarchy_sort_str |
2024 |
bklnumber |
58.11 |
publishDate |
2024 |
allfields |
10.1016/j.memsci.2024.122422 doi (DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Dutta, Soumi verfasserin aut Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial Patel, B.G. Maya verfasserin aut Singh, Yashraj verfasserin aut Hegde, Gurumurthy verfasserin aut Bose, Suryasarathi verfasserin (orcid)0000-0001-8043-9192 aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 694 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:694 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 694 |
spelling |
10.1016/j.memsci.2024.122422 doi (DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Dutta, Soumi verfasserin aut Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial Patel, B.G. Maya verfasserin aut Singh, Yashraj verfasserin aut Hegde, Gurumurthy verfasserin aut Bose, Suryasarathi verfasserin (orcid)0000-0001-8043-9192 aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 694 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:694 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 694 |
allfields_unstemmed |
10.1016/j.memsci.2024.122422 doi (DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Dutta, Soumi verfasserin aut Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial Patel, B.G. Maya verfasserin aut Singh, Yashraj verfasserin aut Hegde, Gurumurthy verfasserin aut Bose, Suryasarathi verfasserin (orcid)0000-0001-8043-9192 aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 694 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:694 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 694 |
allfieldsGer |
10.1016/j.memsci.2024.122422 doi (DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Dutta, Soumi verfasserin aut Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial Patel, B.G. Maya verfasserin aut Singh, Yashraj verfasserin aut Hegde, Gurumurthy verfasserin aut Bose, Suryasarathi verfasserin (orcid)0000-0001-8043-9192 aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 694 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:694 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 694 |
allfieldsSound |
10.1016/j.memsci.2024.122422 doi (DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 DE-627 ger DE-627 rda eng 570 VZ 58.11 bkl Dutta, Soumi verfasserin aut Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial Patel, B.G. Maya verfasserin aut Singh, Yashraj verfasserin aut Hegde, Gurumurthy verfasserin aut Bose, Suryasarathi verfasserin (orcid)0000-0001-8043-9192 aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 694 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:694 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ AR 694 |
language |
English |
source |
Enthalten in Journal of membrane science 694 volume:694 |
sourceStr |
Enthalten in Journal of membrane science 694 volume:694 |
format_phy_str_mv |
Article |
bklname |
Mechanische Verfahrenstechnik |
institution |
findex.gbv.de |
topic_facet |
Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Journal of membrane science |
authorswithroles_txt_mv |
Dutta, Soumi @@aut@@ Patel, B.G. Maya @@aut@@ Singh, Yashraj @@aut@@ Hegde, Gurumurthy @@aut@@ Bose, Suryasarathi @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
302468927 |
dewey-sort |
3570 |
id |
ELV06683063X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06683063X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240203093037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240203s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2024.122422</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06683063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(24)00016-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Soumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpenetrating polymer networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyoxometalate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, B.G. Maya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Yashraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hegde, Gurumurthy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bose, Suryasarathi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8043-9192</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">694</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:694</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">694</subfield></datafield></record></collection>
|
author |
Dutta, Soumi |
spellingShingle |
Dutta, Soumi ddc 570 bkl 58.11 misc Interpenetrating polymer networks misc Metal-organic framework misc Polyoxometalate misc Photocatalytic membrane misc Self-cleaning misc Water treatment misc Antimicrobial Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
authorStr |
Dutta, Soumi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468927 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0376-7388 |
topic_title |
570 VZ 58.11 bkl Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation Interpenetrating polymer networks Metal-organic framework Polyoxometalate Photocatalytic membrane Self-cleaning Water treatment Antimicrobial |
topic |
ddc 570 bkl 58.11 misc Interpenetrating polymer networks misc Metal-organic framework misc Polyoxometalate misc Photocatalytic membrane misc Self-cleaning misc Water treatment misc Antimicrobial |
topic_unstemmed |
ddc 570 bkl 58.11 misc Interpenetrating polymer networks misc Metal-organic framework misc Polyoxometalate misc Photocatalytic membrane misc Self-cleaning misc Water treatment misc Antimicrobial |
topic_browse |
ddc 570 bkl 58.11 misc Interpenetrating polymer networks misc Metal-organic framework misc Polyoxometalate misc Photocatalytic membrane misc Self-cleaning misc Water treatment misc Antimicrobial |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of membrane science |
hierarchy_parent_id |
302468927 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Journal of membrane science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 |
title |
Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
ctrlnum |
(DE-627)ELV06683063X (ELSEVIER)S0376-7388(24)00016-4 |
title_full |
Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
author_sort |
Dutta, Soumi |
journal |
Journal of membrane science |
journalStr |
Journal of membrane science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Dutta, Soumi Patel, B.G. Maya Singh, Yashraj Hegde, Gurumurthy Bose, Suryasarathi |
container_volume |
694 |
class |
570 VZ 58.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dutta, Soumi |
doi_str_mv |
10.1016/j.memsci.2024.122422 |
normlink |
(ORCID)0000-0001-8043-9192 |
normlink_prefix_str_mv |
(orcid)0000-0001-8043-9192 |
dewey-full |
570 |
author2-role |
verfasserin |
title_sort |
photocatalytic driven ‘self-cleaning’ ipn membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
title_auth |
Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
abstract |
Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. |
abstractGer |
Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. |
abstract_unstemmed |
Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation |
remote_bool |
true |
author2 |
Patel, B.G. Maya Singh, Yashraj Hegde, Gurumurthy Bose, Suryasarathi |
author2Str |
Patel, B.G. Maya Singh, Yashraj Hegde, Gurumurthy Bose, Suryasarathi |
ppnlink |
302468927 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.memsci.2024.122422 |
up_date |
2024-07-06T19:09:04.555Z |
_version_ |
1803857894630752256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06683063X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240203093037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240203s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2024.122422</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06683063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(24)00016-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Soumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photocatalytic driven ‘self-cleaning’ IPN membranes infused with a ‘host-guest’ pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional water treatment membranes frequently encounter challenges in attaining an ideal equilibrium between permeability and selectivity. The performance of membranes is further hampered by hydrophobicity, scalability, and fouling problems, as well as excessive energy consumption. Hence, the current research is dedicated to the development of highly effective antifouling membranes, aiming for a significant balance between water permeance and separation efficiency, and featuring exceptional photocatalytic self-cleaning properties to ensure the sustainable reuse of membranes. In this study, a unique nanocomposite-based membrane is designed containing metal-organic frameworks (MOFs) MIL-101 (Fe) encapsulated copper-containing polyoxometalate (Cu-POM) incorporated into an interpenetrating polymer networks (IPNs) membrane. POMs are highly electronegative, oxo-enriched nanosized metal-oxygen cluster species and when composited with MOF yields POMOF which can help in the removal of pollutants from water through electrostatic site-specific binding. The IPN membrane designed by polymerizing aniline in the presence of polyvinylidene fluoride (PVDF) offers tunable pores of the membrane. The infusion of POMOF imparts a strong negative charge to the membrane surface, improving membrane hydrophilicity. This enhances pollutant removal through the Donnan exclusion principle and adds anti-fouling properties. Furthermore, the reduced pore size achieved by the IPN architecture in the POMOFIPNs membrane effectively sieves out both cationic and anionic dyes, as well as pharmaceutical pollutants. Additionally, POMOF enhances the photocatalytic degradation of CR and MB dyes, coupled with essential self-cleaning attributes vital for separation processes. The IPNs structure, apart from housing POMOF, fortifies the membrane's mechanical strength with its distinctive network-like configuration. Furthermore, these advanced membranes showcase robust antibacterial and antiviral characteristics, while remaining non-cytotoxic to mammalian cells. Our findings indicate that the state-of-the-art POMOF@IPNs membrane is scalable and holds substantial promise for industrial wastewater treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpenetrating polymer networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyoxometalate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, B.G. Maya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Yashraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hegde, Gurumurthy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bose, Suryasarathi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8043-9192</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">694</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:694</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">694</subfield></datafield></record></collection>
|
score |
7.401143 |