Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles
This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs)...
Ausführliche Beschreibung
Autor*in: |
Mariscal, Gabriel [verfasserIn] Depcik, Christopher [verfasserIn] Chao, Haiyang [verfasserIn] Wu, Gang [verfasserIn] Li, Xianglin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy conversion and management - Amsterdam [u.a.] : Elsevier Science, 1980, 301 |
---|---|
Übergeordnetes Werk: |
volume:301 |
DOI / URN: |
10.1016/j.enconman.2023.118005 |
---|
Katalog-ID: |
ELV066840864 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066840864 | ||
003 | DE-627 | ||
005 | 20240203093155.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240203s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enconman.2023.118005 |2 doi | |
035 | |a (DE-627)ELV066840864 | ||
035 | |a (ELSEVIER)S0196-8904(23)01351-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.70 |2 bkl | ||
084 | |a 83.65 |2 bkl | ||
084 | |a 52.57 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Mariscal, Gabriel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. | ||
650 | 4 | |a UAV | |
650 | 4 | |a Aircraft Electrification | |
650 | 4 | |a Hybrid Regional Aircraft | |
650 | 4 | |a Fuel Cell | |
650 | 4 | |a Battery | |
650 | 4 | |a Hydrogen | |
650 | 4 | |a Methanol | |
700 | 1 | |a Depcik, Christopher |e verfasserin |4 aut | |
700 | 1 | |a Chao, Haiyang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Gang |e verfasserin |4 aut | |
700 | 1 | |a Li, Xianglin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy conversion and management |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 301 |h Online-Ressource |w (DE-627)320407659 |w (DE-600)2000891-0 |w (DE-576)12088352X |7 nnns |
773 | 1 | 8 | |g volume:301 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
936 | b | k | |a 83.65 |j Versorgungswirtschaft |q VZ |
936 | b | k | |a 52.57 |j Energiespeicherung |q VZ |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 301 |
author_variant |
g m gm c d cd h c hc g w gw x l xl |
---|---|
matchkey_str |
mariscalgabrieldepcikchristopherchaohaiy:2023----:ehiaadcnmcesbltoapynfeclsshpwrore |
hierarchy_sort_str |
2023 |
bklnumber |
50.70 83.65 52.57 52.56 |
publishDate |
2023 |
allfields |
10.1016/j.enconman.2023.118005 doi (DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Mariscal, Gabriel verfasserin aut Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol Depcik, Christopher verfasserin aut Chao, Haiyang verfasserin aut Wu, Gang verfasserin aut Li, Xianglin verfasserin aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 301 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:301 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 301 |
spelling |
10.1016/j.enconman.2023.118005 doi (DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Mariscal, Gabriel verfasserin aut Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol Depcik, Christopher verfasserin aut Chao, Haiyang verfasserin aut Wu, Gang verfasserin aut Li, Xianglin verfasserin aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 301 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:301 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 301 |
allfields_unstemmed |
10.1016/j.enconman.2023.118005 doi (DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Mariscal, Gabriel verfasserin aut Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol Depcik, Christopher verfasserin aut Chao, Haiyang verfasserin aut Wu, Gang verfasserin aut Li, Xianglin verfasserin aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 301 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:301 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 301 |
allfieldsGer |
10.1016/j.enconman.2023.118005 doi (DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Mariscal, Gabriel verfasserin aut Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol Depcik, Christopher verfasserin aut Chao, Haiyang verfasserin aut Wu, Gang verfasserin aut Li, Xianglin verfasserin aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 301 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:301 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 301 |
allfieldsSound |
10.1016/j.enconman.2023.118005 doi (DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 DE-627 ger DE-627 rda eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Mariscal, Gabriel verfasserin aut Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol Depcik, Christopher verfasserin aut Chao, Haiyang verfasserin aut Wu, Gang verfasserin aut Li, Xianglin verfasserin aut Enthalten in Energy conversion and management Amsterdam [u.a.] : Elsevier Science, 1980 301 Online-Ressource (DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X nnns volume:301 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 301 |
language |
English |
source |
Enthalten in Energy conversion and management 301 volume:301 |
sourceStr |
Enthalten in Energy conversion and management 301 volume:301 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines Versorgungswirtschaft Energiespeicherung Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Energy conversion and management |
authorswithroles_txt_mv |
Mariscal, Gabriel @@aut@@ Depcik, Christopher @@aut@@ Chao, Haiyang @@aut@@ Wu, Gang @@aut@@ Li, Xianglin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320407659 |
dewey-sort |
3620 |
id |
ELV066840864 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066840864</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240203093155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240203s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2023.118005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066840864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(23)01351-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mariscal, Gabriel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UAV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft Electrification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid Regional Aircraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel Cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methanol</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Depcik, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chao, Haiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianglin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy conversion and management</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">301</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320407659</subfield><subfield code="w">(DE-600)2000891-0</subfield><subfield code="w">(DE-576)12088352X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield></datafield></record></collection>
|
author |
Mariscal, Gabriel |
spellingShingle |
Mariscal, Gabriel ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc UAV misc Aircraft Electrification misc Hybrid Regional Aircraft misc Fuel Cell misc Battery misc Hydrogen misc Methanol Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
authorStr |
Mariscal, Gabriel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320407659 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles UAV Aircraft Electrification Hybrid Regional Aircraft Fuel Cell Battery Hydrogen Methanol |
topic |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc UAV misc Aircraft Electrification misc Hybrid Regional Aircraft misc Fuel Cell misc Battery misc Hydrogen misc Methanol |
topic_unstemmed |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc UAV misc Aircraft Electrification misc Hybrid Regional Aircraft misc Fuel Cell misc Battery misc Hydrogen misc Methanol |
topic_browse |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 misc UAV misc Aircraft Electrification misc Hybrid Regional Aircraft misc Fuel Cell misc Battery misc Hydrogen misc Methanol |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy conversion and management |
hierarchy_parent_id |
320407659 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Energy conversion and management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320407659 (DE-600)2000891-0 (DE-576)12088352X |
title |
Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
ctrlnum |
(DE-627)ELV066840864 (ELSEVIER)S0196-8904(23)01351-1 |
title_full |
Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
author_sort |
Mariscal, Gabriel |
journal |
Energy conversion and management |
journalStr |
Energy conversion and management |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Mariscal, Gabriel Depcik, Christopher Chao, Haiyang Wu, Gang Li, Xianglin |
container_volume |
301 |
class |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mariscal, Gabriel |
doi_str_mv |
10.1016/j.enconman.2023.118005 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
title_auth |
Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
abstract |
This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. |
abstractGer |
This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. |
abstract_unstemmed |
This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles |
remote_bool |
true |
author2 |
Depcik, Christopher Chao, Haiyang Wu, Gang Li, Xianglin |
author2Str |
Depcik, Christopher Chao, Haiyang Wu, Gang Li, Xianglin |
ppnlink |
320407659 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enconman.2023.118005 |
up_date |
2024-07-06T19:11:17.173Z |
_version_ |
1803858033690804224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066840864</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240203093155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240203s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2023.118005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066840864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(23)01351-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mariscal, Gabriel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to quantitatively compare the weight, cost, and flight endurance of small unmanned aerial vehicles (UAVs) powered by batteries and fuel cells. We compare the use of lithium-polymer (LiPo) batteries, proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs) in powering two representative small UAVs: KHawk-Thermal (fixed-wing, 1.4 m wingspan) and KHawk-CarbonQuad (quadcopter, 0.7 m diagonal length). This study uses experimentally measured polarization curves of fuel cells and power consumption data of LiPo-powered UAVs during flight tests as input to obtain the minimum mass, power consumption, and life cycle costs (LCC) of these power systems. The analyses consider the voltage, efficiency, and power at each current density to find the optimal operating current density to obtain the minimum weight and cost of fuel cell systems to obtain the desired flight endurance. The LiPo battery is the most cost-effective option to power UAVs with an endurance of 0.7 hrs (42 min) or less. At medium flight endurance (e.g., 0.8 – 2.1 hrs), the PEMFC system has the lowest mass and LCC. While hydrogen is the most energy-dense fuel, hydrogen storage significantly increases the mass and cost of the system. For UAVs undergoing long endurance missions (>2.2 hrs for fixed-wing UAVs, > 4.3 hrs for quadcopter UAVs), a DMFC system has the lowest mass and power consumption due to the high energy density of methanol and its simple storage requirements. This study also analyzes the impact of key parameters, such as the specific energy and power of battery and fuel cells, the mass ratio of hydrogen storage, and the lift-to-drag ratio, on UAVs' mass and power consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UAV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft Electrification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid Regional Aircraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel Cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methanol</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Depcik, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chao, Haiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianglin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy conversion and management</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">301</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320407659</subfield><subfield code="w">(DE-600)2000891-0</subfield><subfield code="w">(DE-576)12088352X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield></datafield></record></collection>
|
score |
7.400509 |