Maturity identification and category determination method of broccoli based on semantic segmentation models
The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research....
Ausführliche Beschreibung
Autor*in: |
Kang, Shuo [verfasserIn] Li, Dongfang [verfasserIn] Li, Boliao [verfasserIn] Zhu, Jianxi [verfasserIn] Long, Sifang [verfasserIn] Wang, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers and electronics in agriculture - Amsterdam [u.a.] : Elsevier Science, 1985, 217 |
---|---|
Übergeordnetes Werk: |
volume:217 |
DOI / URN: |
10.1016/j.compag.2024.108633 |
---|
Katalog-ID: |
ELV066871123 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066871123 | ||
003 | DE-627 | ||
005 | 20240204093214.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240204s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compag.2024.108633 |2 doi | |
035 | |a (DE-627)ELV066871123 | ||
035 | |a (ELSEVIER)S0168-1699(24)00024-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 630 |a 640 |a 004 |q VZ |
084 | |a 48.03 |2 bkl | ||
100 | 1 | |a Kang, Shuo |e verfasserin |0 (orcid)0000-0002-4492-3929 |4 aut | |
245 | 1 | 0 | |a Maturity identification and category determination method of broccoli based on semantic segmentation models |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. | ||
650 | 4 | |a Maturity identification | |
650 | 4 | |a Semantic segmentation | |
650 | 4 | |a Selective harvesting | |
650 | 4 | |a Category determination method | |
650 | 4 | |a Broccoli | |
700 | 1 | |a Li, Dongfang |e verfasserin |4 aut | |
700 | 1 | |a Li, Boliao |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Jianxi |e verfasserin |4 aut | |
700 | 1 | |a Long, Sifang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jun |e verfasserin |0 (orcid)0000-0001-5767-6149 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers and electronics in agriculture |d Amsterdam [u.a.] : Elsevier Science, 1985 |g 217 |h Online-Ressource |w (DE-627)320567826 |w (DE-600)2016151-7 |w (DE-576)090955684 |x 1872-7107 |7 nnns |
773 | 1 | 8 | |g volume:217 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.03 |j Methoden und Techniken der Land- und Forstwirtschaft |q VZ |
951 | |a AR | ||
952 | |d 217 |
author_variant |
s k sk d l dl b l bl j z jz s l sl j w jw |
---|---|
matchkey_str |
article:18727107:2024----::auiydniiainnctgrdtriainehdfrcoiaeo |
hierarchy_sort_str |
2024 |
bklnumber |
48.03 |
publishDate |
2024 |
allfields |
10.1016/j.compag.2024.108633 doi (DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Kang, Shuo verfasserin (orcid)0000-0002-4492-3929 aut Maturity identification and category determination method of broccoli based on semantic segmentation models 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli Li, Dongfang verfasserin aut Li, Boliao verfasserin aut Zhu, Jianxi verfasserin aut Long, Sifang verfasserin aut Wang, Jun verfasserin (orcid)0000-0001-5767-6149 aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 217 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 217 |
spelling |
10.1016/j.compag.2024.108633 doi (DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Kang, Shuo verfasserin (orcid)0000-0002-4492-3929 aut Maturity identification and category determination method of broccoli based on semantic segmentation models 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli Li, Dongfang verfasserin aut Li, Boliao verfasserin aut Zhu, Jianxi verfasserin aut Long, Sifang verfasserin aut Wang, Jun verfasserin (orcid)0000-0001-5767-6149 aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 217 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 217 |
allfields_unstemmed |
10.1016/j.compag.2024.108633 doi (DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Kang, Shuo verfasserin (orcid)0000-0002-4492-3929 aut Maturity identification and category determination method of broccoli based on semantic segmentation models 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli Li, Dongfang verfasserin aut Li, Boliao verfasserin aut Zhu, Jianxi verfasserin aut Long, Sifang verfasserin aut Wang, Jun verfasserin (orcid)0000-0001-5767-6149 aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 217 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 217 |
allfieldsGer |
10.1016/j.compag.2024.108633 doi (DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Kang, Shuo verfasserin (orcid)0000-0002-4492-3929 aut Maturity identification and category determination method of broccoli based on semantic segmentation models 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli Li, Dongfang verfasserin aut Li, Boliao verfasserin aut Zhu, Jianxi verfasserin aut Long, Sifang verfasserin aut Wang, Jun verfasserin (orcid)0000-0001-5767-6149 aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 217 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 217 |
allfieldsSound |
10.1016/j.compag.2024.108633 doi (DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Kang, Shuo verfasserin (orcid)0000-0002-4492-3929 aut Maturity identification and category determination method of broccoli based on semantic segmentation models 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli Li, Dongfang verfasserin aut Li, Boliao verfasserin aut Zhu, Jianxi verfasserin aut Long, Sifang verfasserin aut Wang, Jun verfasserin (orcid)0000-0001-5767-6149 aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 217 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 217 |
language |
English |
source |
Enthalten in Computers and electronics in agriculture 217 volume:217 |
sourceStr |
Enthalten in Computers and electronics in agriculture 217 volume:217 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Land- und Forstwirtschaft |
institution |
findex.gbv.de |
topic_facet |
Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Computers and electronics in agriculture |
authorswithroles_txt_mv |
Kang, Shuo @@aut@@ Li, Dongfang @@aut@@ Li, Boliao @@aut@@ Zhu, Jianxi @@aut@@ Long, Sifang @@aut@@ Wang, Jun @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
320567826 |
dewey-sort |
3620 |
id |
ELV066871123 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066871123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240204093214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240204s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2024.108633</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066871123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(24)00024-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kang, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4492-3929</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maturity identification and category determination method of broccoli based on semantic segmentation models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maturity identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category determination method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broccoli</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dongfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Boliao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jianxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Sifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5767-6149</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">217</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield></datafield></record></collection>
|
author |
Kang, Shuo |
spellingShingle |
Kang, Shuo ddc 620 bkl 48.03 misc Maturity identification misc Semantic segmentation misc Selective harvesting misc Category determination method misc Broccoli Maturity identification and category determination method of broccoli based on semantic segmentation models |
authorStr |
Kang, Shuo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320567826 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 630 - Agriculture & related technologies 640 - Home & family management 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7107 |
topic_title |
620 630 640 004 VZ 48.03 bkl Maturity identification and category determination method of broccoli based on semantic segmentation models Maturity identification Semantic segmentation Selective harvesting Category determination method Broccoli |
topic |
ddc 620 bkl 48.03 misc Maturity identification misc Semantic segmentation misc Selective harvesting misc Category determination method misc Broccoli |
topic_unstemmed |
ddc 620 bkl 48.03 misc Maturity identification misc Semantic segmentation misc Selective harvesting misc Category determination method misc Broccoli |
topic_browse |
ddc 620 bkl 48.03 misc Maturity identification misc Semantic segmentation misc Selective harvesting misc Category determination method misc Broccoli |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers and electronics in agriculture |
hierarchy_parent_id |
320567826 |
dewey-tens |
620 - Engineering 630 - Agriculture 640 - Home & family management 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers and electronics in agriculture |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 |
title |
Maturity identification and category determination method of broccoli based on semantic segmentation models |
ctrlnum |
(DE-627)ELV066871123 (ELSEVIER)S0168-1699(24)00024-3 |
title_full |
Maturity identification and category determination method of broccoli based on semantic segmentation models |
author_sort |
Kang, Shuo |
journal |
Computers and electronics in agriculture |
journalStr |
Computers and electronics in agriculture |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Kang, Shuo Li, Dongfang Li, Boliao Zhu, Jianxi Long, Sifang Wang, Jun |
container_volume |
217 |
class |
620 630 640 004 VZ 48.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kang, Shuo |
doi_str_mv |
10.1016/j.compag.2024.108633 |
normlink |
(ORCID)0000-0002-4492-3929 (ORCID)0000-0001-5767-6149 |
normlink_prefix_str_mv |
(orcid)0000-0002-4492-3929 (orcid)0000-0001-5767-6149 |
dewey-full |
620 630 640 004 |
author2-role |
verfasserin |
title_sort |
maturity identification and category determination method of broccoli based on semantic segmentation models |
title_auth |
Maturity identification and category determination method of broccoli based on semantic segmentation models |
abstract |
The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. |
abstractGer |
The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. |
abstract_unstemmed |
The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Maturity identification and category determination method of broccoli based on semantic segmentation models |
remote_bool |
true |
author2 |
Li, Dongfang Li, Boliao Zhu, Jianxi Long, Sifang Wang, Jun |
author2Str |
Li, Dongfang Li, Boliao Zhu, Jianxi Long, Sifang Wang, Jun |
ppnlink |
320567826 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compag.2024.108633 |
up_date |
2024-07-06T19:17:33.451Z |
_version_ |
1803858428247932928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066871123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240204093214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240204s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2024.108633</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066871123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(24)00024-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kang, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4492-3929</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maturity identification and category determination method of broccoli based on semantic segmentation models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maturity identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category determination method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broccoli</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dongfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Boliao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jianxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Sifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5767-6149</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">217</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield></datafield></record></collection>
|
score |
7.401454 |