Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications
In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally,...
Ausführliche Beschreibung
Autor*in: |
Mohamed, W.S. [verfasserIn] Ali, H.M. [verfasserIn] Adam, A.G. [verfasserIn] Shokr, E. Kh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Optical materials - Amsterdam [u.a.] : Elsevier Science, 1992, 148 |
---|---|
Übergeordnetes Werk: |
volume:148 |
DOI / URN: |
10.1016/j.optmat.2024.114885 |
---|
Katalog-ID: |
ELV066911885 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066911885 | ||
003 | DE-627 | ||
005 | 20240208093024.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240207s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optmat.2024.114885 |2 doi | |
035 | |a (DE-627)ELV066911885 | ||
035 | |a (ELSEVIER)S0925-3467(24)00062-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |a 670 |q VZ |
084 | |a 51.45 |2 bkl | ||
084 | |a 33.18 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
084 | |a 50.37 |2 bkl | ||
100 | 1 | |a Mohamed, W.S. |e verfasserin |0 (orcid)0000-0003-4069-8637 |4 aut | |
245 | 1 | 0 | |a Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. | ||
650 | 4 | |a Thermal vacuum evaporation | |
650 | 4 | |a X-ray diffraction | |
650 | 4 | |a Optical band gap | |
650 | 4 | |a Electrical conductivity | |
650 | 4 | |a Photocatalytic degradation | |
700 | 1 | |a Ali, H.M. |e verfasserin |4 aut | |
700 | 1 | |a Adam, A.G. |e verfasserin |4 aut | |
700 | 1 | |a Shokr, E. Kh |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical materials |d Amsterdam [u.a.] : Elsevier Science, 1992 |g 148 |h Online-Ressource |w (DE-627)320530175 |w (DE-600)2015659-5 |w (DE-576)25948489X |x 1873-1252 |7 nnns |
773 | 1 | 8 | |g volume:148 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |q VZ |
936 | b | k | |a 33.18 |j Optik |q VZ |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |q VZ |
936 | b | k | |a 50.37 |j Technische Optik |q VZ |
951 | |a AR | ||
952 | |d 148 |
author_variant |
w m wm h a ha a a aa e k s ek eks |
---|---|
matchkey_str |
article:18731252:2024----::aumvprtdb03nhnimwtvrighcnsefrn |
hierarchy_sort_str |
2024 |
bklnumber |
51.45 33.18 33.38 50.37 |
publishDate |
2024 |
allfields |
10.1016/j.optmat.2024.114885 doi (DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Mohamed, W.S. verfasserin (orcid)0000-0003-4069-8637 aut Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation Ali, H.M. verfasserin aut Adam, A.G. verfasserin aut Shokr, E. Kh verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 148 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 148 |
spelling |
10.1016/j.optmat.2024.114885 doi (DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Mohamed, W.S. verfasserin (orcid)0000-0003-4069-8637 aut Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation Ali, H.M. verfasserin aut Adam, A.G. verfasserin aut Shokr, E. Kh verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 148 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 148 |
allfields_unstemmed |
10.1016/j.optmat.2024.114885 doi (DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Mohamed, W.S. verfasserin (orcid)0000-0003-4069-8637 aut Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation Ali, H.M. verfasserin aut Adam, A.G. verfasserin aut Shokr, E. Kh verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 148 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 148 |
allfieldsGer |
10.1016/j.optmat.2024.114885 doi (DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Mohamed, W.S. verfasserin (orcid)0000-0003-4069-8637 aut Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation Ali, H.M. verfasserin aut Adam, A.G. verfasserin aut Shokr, E. Kh verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 148 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 148 |
allfieldsSound |
10.1016/j.optmat.2024.114885 doi (DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Mohamed, W.S. verfasserin (orcid)0000-0003-4069-8637 aut Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation Ali, H.M. verfasserin aut Adam, A.G. verfasserin aut Shokr, E. Kh verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 148 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:148 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 148 |
language |
English |
source |
Enthalten in Optical materials 148 volume:148 |
sourceStr |
Enthalten in Optical materials 148 volume:148 |
format_phy_str_mv |
Article |
bklname |
Werkstoffe mit besonderen Eigenschaften Optik Quantenoptik nichtlineare Optik Technische Optik |
institution |
findex.gbv.de |
topic_facet |
Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optical materials |
authorswithroles_txt_mv |
Mohamed, W.S. @@aut@@ Ali, H.M. @@aut@@ Adam, A.G. @@aut@@ Shokr, E. Kh @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
320530175 |
dewey-sort |
3530 |
id |
ELV066911885 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066911885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240208093024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240207s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2024.114885</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066911885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(24)00062-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohamed, W.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4069-8637</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal vacuum evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical band gap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic degradation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, H.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, A.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shokr, E. Kh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">148</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield></datafield></record></collection>
|
author |
Mohamed, W.S. |
spellingShingle |
Mohamed, W.S. ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Thermal vacuum evaporation misc X-ray diffraction misc Optical band gap misc Electrical conductivity misc Photocatalytic degradation Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
authorStr |
Mohamed, W.S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530175 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-1252 |
topic_title |
530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications Thermal vacuum evaporation X-ray diffraction Optical band gap Electrical conductivity Photocatalytic degradation |
topic |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Thermal vacuum evaporation misc X-ray diffraction misc Optical band gap misc Electrical conductivity misc Photocatalytic degradation |
topic_unstemmed |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Thermal vacuum evaporation misc X-ray diffraction misc Optical band gap misc Electrical conductivity misc Photocatalytic degradation |
topic_browse |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Thermal vacuum evaporation misc X-ray diffraction misc Optical band gap misc Electrical conductivity misc Photocatalytic degradation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optical materials |
hierarchy_parent_id |
320530175 |
dewey-tens |
530 - Physics 620 - Engineering 670 - Manufacturing |
hierarchy_top_title |
Optical materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X |
title |
Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
ctrlnum |
(DE-627)ELV066911885 (ELSEVIER)S0925-3467(24)00062-4 |
title_full |
Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
author_sort |
Mohamed, W.S. |
journal |
Optical materials |
journalStr |
Optical materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Mohamed, W.S. Ali, H.M. Adam, A.G. Shokr, E. Kh |
container_volume |
148 |
class |
530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mohamed, W.S. |
doi_str_mv |
10.1016/j.optmat.2024.114885 |
normlink |
(ORCID)0000-0003-4069-8637 |
normlink_prefix_str_mv |
(orcid)0000-0003-4069-8637 |
dewey-full |
530 620 670 |
author2-role |
verfasserin |
title_sort |
vacuum-evaporated pbs:0.03 zn thin films with varying thicknesses for environmental applications |
title_auth |
Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
abstract |
In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. |
abstractGer |
In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. |
abstract_unstemmed |
In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications |
remote_bool |
true |
author2 |
Ali, H.M. Adam, A.G. Shokr, E. Kh |
author2Str |
Ali, H.M. Adam, A.G. Shokr, E. Kh |
ppnlink |
320530175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.optmat.2024.114885 |
up_date |
2024-07-06T19:25:55.037Z |
_version_ |
1803858954196877312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066911885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240208093024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240207s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2024.114885</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066911885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(24)00062-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohamed, W.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4069-8637</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this research, we explore how the thickness of PbS-doped Zn thin films made through thermal vacuum evaporation affects their physical properties for environmental applications. Our x-ray diffraction (XRD) examination shows that the films consist of pure crystalline cubic PbS phase. Additionally, the energy-dispersive X-ray spectroscope (EDXS) provides confirmation that the synthesized products are of high purity. PbS films doped with Zn have spherical nanocrystals ranging from 130 nm to 250 nm in size, as observed through field emission (FE)-scanning electron microscopy (FE-SEM) analysis. The thickness of the film layer was found to correlate significantly with an increase in crystallite size and grain size, as validated by both XRD and FE-SEM analyses. The optical energy gap (Eg) of the thin films under examination exhibited variations in relation to their respective thickness. Bandgap energy was found to decrease from 1.66 eV to 1.2 eV as film thickness was increased from 50 nm to 250 nm. The Arrhenius law shows that films with varying thicknesses have thermally activated electrical conductivity and exhibit two conduction mechanisms. After analyzing the photocatalytic decomposition of methylene blue, it was observed that a thicker (PbS)0.97(Zn)0.03 film with a larger grain size demonstrated superior photocatalytic efficiency (92 % after an exposure duration of 180 min). This is due to a smaller band gap and the presence of defect sites, which enhance catalytic reactions. The study presents a framework for researching the controllable structure, thickness, and composition of chalcogenide semiconductor thin films for environmental applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal vacuum evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical band gap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic degradation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, H.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, A.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shokr, E. Kh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">148</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield></datafield></record></collection>
|
score |
7.402647 |