The nonlinear elastic response of bicontinuous rubber blends
Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential...
Ausführliche Beschreibung
Autor*in: |
Sozio, Fabio [verfasserIn] Lallet, François [verfasserIn] Perriot, Antoine [verfasserIn] Lopez-Pamies, Oscar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of solids and structures - New York, NY [u.a.] : Elsevier, 1965, 290 |
---|---|
Übergeordnetes Werk: |
volume:290 |
DOI / URN: |
10.1016/j.ijsolstr.2024.112660 |
---|
Katalog-ID: |
ELV066947472 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV066947472 | ||
003 | DE-627 | ||
005 | 20240215093133.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240209s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijsolstr.2024.112660 |2 doi | |
035 | |a (DE-627)ELV066947472 | ||
035 | |a (ELSEVIER)S0020-7683(24)00017-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.31 |2 bkl | ||
100 | 1 | |a Sozio, Fabio |e verfasserin |0 (orcid)0000-0003-4287-2686 |4 aut | |
245 | 1 | 0 | |a The nonlinear elastic response of bicontinuous rubber blends |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. | ||
650 | 4 | |a Elastomers | |
650 | 4 | |a Rubber | |
650 | 4 | |a Immiscible blends | |
650 | 4 | |a Finite deformation | |
650 | 4 | |a Homogenization | |
700 | 1 | |a Lallet, François |e verfasserin |0 (orcid)0000-0002-0280-8594 |4 aut | |
700 | 1 | |a Perriot, Antoine |e verfasserin |4 aut | |
700 | 1 | |a Lopez-Pamies, Oscar |e verfasserin |0 (orcid)0000-0003-1661-5598 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of solids and structures |d New York, NY [u.a.] : Elsevier, 1965 |g 290 |h Online-Ressource |w (DE-627)31972039X |w (DE-600)2012750-9 |w (DE-576)259271403 |7 nnns |
773 | 1 | 8 | |g volume:290 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
951 | |a AR | ||
952 | |d 290 |
author_variant |
f s fs f l fl a p ap o l p olp |
---|---|
matchkey_str |
soziofabiolalletfranoisperriotantoinelop:2024----:hnnierlsirsosobcniu |
hierarchy_sort_str |
2024 |
bklnumber |
50.31 |
publishDate |
2024 |
allfields |
10.1016/j.ijsolstr.2024.112660 doi (DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Sozio, Fabio verfasserin (orcid)0000-0003-4287-2686 aut The nonlinear elastic response of bicontinuous rubber blends 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. Elastomers Rubber Immiscible blends Finite deformation Homogenization Lallet, François verfasserin (orcid)0000-0002-0280-8594 aut Perriot, Antoine verfasserin aut Lopez-Pamies, Oscar verfasserin (orcid)0000-0003-1661-5598 aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 290 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:290 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 290 |
spelling |
10.1016/j.ijsolstr.2024.112660 doi (DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Sozio, Fabio verfasserin (orcid)0000-0003-4287-2686 aut The nonlinear elastic response of bicontinuous rubber blends 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. Elastomers Rubber Immiscible blends Finite deformation Homogenization Lallet, François verfasserin (orcid)0000-0002-0280-8594 aut Perriot, Antoine verfasserin aut Lopez-Pamies, Oscar verfasserin (orcid)0000-0003-1661-5598 aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 290 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:290 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 290 |
allfields_unstemmed |
10.1016/j.ijsolstr.2024.112660 doi (DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Sozio, Fabio verfasserin (orcid)0000-0003-4287-2686 aut The nonlinear elastic response of bicontinuous rubber blends 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. Elastomers Rubber Immiscible blends Finite deformation Homogenization Lallet, François verfasserin (orcid)0000-0002-0280-8594 aut Perriot, Antoine verfasserin aut Lopez-Pamies, Oscar verfasserin (orcid)0000-0003-1661-5598 aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 290 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:290 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 290 |
allfieldsGer |
10.1016/j.ijsolstr.2024.112660 doi (DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Sozio, Fabio verfasserin (orcid)0000-0003-4287-2686 aut The nonlinear elastic response of bicontinuous rubber blends 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. Elastomers Rubber Immiscible blends Finite deformation Homogenization Lallet, François verfasserin (orcid)0000-0002-0280-8594 aut Perriot, Antoine verfasserin aut Lopez-Pamies, Oscar verfasserin (orcid)0000-0003-1661-5598 aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 290 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:290 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 290 |
allfieldsSound |
10.1016/j.ijsolstr.2024.112660 doi (DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Sozio, Fabio verfasserin (orcid)0000-0003-4287-2686 aut The nonlinear elastic response of bicontinuous rubber blends 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. Elastomers Rubber Immiscible blends Finite deformation Homogenization Lallet, François verfasserin (orcid)0000-0002-0280-8594 aut Perriot, Antoine verfasserin aut Lopez-Pamies, Oscar verfasserin (orcid)0000-0003-1661-5598 aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 290 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:290 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 290 |
language |
English |
source |
Enthalten in International journal of solids and structures 290 volume:290 |
sourceStr |
Enthalten in International journal of solids and structures 290 volume:290 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik |
institution |
findex.gbv.de |
topic_facet |
Elastomers Rubber Immiscible blends Finite deformation Homogenization |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of solids and structures |
authorswithroles_txt_mv |
Sozio, Fabio @@aut@@ Lallet, François @@aut@@ Perriot, Antoine @@aut@@ Lopez-Pamies, Oscar @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
31972039X |
dewey-sort |
3530 |
id |
ELV066947472 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066947472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240215093133.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2024.112660</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066947472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(24)00017-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sozio, Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4287-2686</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The nonlinear elastic response of bicontinuous rubber blends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastomers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immiscible blends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lallet, François</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0280-8594</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perriot, Antoine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lopez-Pamies, Oscar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1661-5598</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of solids and structures</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">290</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)31972039X</subfield><subfield code="w">(DE-600)2012750-9</subfield><subfield code="w">(DE-576)259271403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290</subfield></datafield></record></collection>
|
author |
Sozio, Fabio |
spellingShingle |
Sozio, Fabio ddc 530 bkl 50.31 misc Elastomers misc Rubber misc Immiscible blends misc Finite deformation misc Homogenization The nonlinear elastic response of bicontinuous rubber blends |
authorStr |
Sozio, Fabio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)31972039X |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 50.31 bkl The nonlinear elastic response of bicontinuous rubber blends Elastomers Rubber Immiscible blends Finite deformation Homogenization |
topic |
ddc 530 bkl 50.31 misc Elastomers misc Rubber misc Immiscible blends misc Finite deformation misc Homogenization |
topic_unstemmed |
ddc 530 bkl 50.31 misc Elastomers misc Rubber misc Immiscible blends misc Finite deformation misc Homogenization |
topic_browse |
ddc 530 bkl 50.31 misc Elastomers misc Rubber misc Immiscible blends misc Finite deformation misc Homogenization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of solids and structures |
hierarchy_parent_id |
31972039X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of solids and structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 |
title |
The nonlinear elastic response of bicontinuous rubber blends |
ctrlnum |
(DE-627)ELV066947472 (ELSEVIER)S0020-7683(24)00017-9 |
title_full |
The nonlinear elastic response of bicontinuous rubber blends |
author_sort |
Sozio, Fabio |
journal |
International journal of solids and structures |
journalStr |
International journal of solids and structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Sozio, Fabio Lallet, François Perriot, Antoine Lopez-Pamies, Oscar |
container_volume |
290 |
class |
530 VZ 50.31 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sozio, Fabio |
doi_str_mv |
10.1016/j.ijsolstr.2024.112660 |
normlink |
(ORCID)0000-0003-4287-2686 (ORCID)0000-0002-0280-8594 (ORCID)0000-0003-1661-5598 |
normlink_prefix_str_mv |
(orcid)0000-0003-4287-2686 (orcid)0000-0002-0280-8594 (orcid)0000-0003-1661-5598 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
the nonlinear elastic response of bicontinuous rubber blends |
title_auth |
The nonlinear elastic response of bicontinuous rubber blends |
abstract |
Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. |
abstractGer |
Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. |
abstract_unstemmed |
Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
The nonlinear elastic response of bicontinuous rubber blends |
remote_bool |
true |
author2 |
Lallet, François Perriot, Antoine Lopez-Pamies, Oscar |
author2Str |
Lallet, François Perriot, Antoine Lopez-Pamies, Oscar |
ppnlink |
31972039X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijsolstr.2024.112660 |
up_date |
2024-07-06T19:33:20.333Z |
_version_ |
1803859421124624384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV066947472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240215093133.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2024.112660</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066947472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(24)00017-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sozio, Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4287-2686</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The nonlinear elastic response of bicontinuous rubber blends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rubber blends are ubiquitous in countless technological applications. More often than not, rubber blends exhibit complex interpenetrating microstructures, which are thought to have a significant impact on their resulting macroscopic mechanical properties. As a first step to understand this potential impact, this paper presents a bottom-up or homogenization study of the nonlinear elastic response of the prominent class of bicontinuous rubber blends, that is, blends made of two immiscible constituents or phases segregated into an interpenetrating network of two separate but fully continuous domains that are perfectly bonded to one another. The focus is on blends that are isotropic and that contain an equal volume fraction (50/50) of each phase. The microstructures of these blends are idealized as microstructures generated by level cuts of Gaussian random fields that are suitably constrained to be periodic so as to allow for the construction of unit cells over which periodic homogenization can be carried out. The homogenized or macroscopic elastic response of such blends are determined both numerically via finite elements and analytically via a nonlinear comparison medium method. The numerical approach makes use of a novel meshing scheme that leads to conforming and periodic simplicial meshes starting from a voxelized representation of the microstructures. Results are presented for the fundamental case when both rubber phases are Neo-Hookean, as well as when they exhibit non-Gaussian elasticity. Remarkably, irrespective of the elastic behavior of the phases, the results show that the homogenized response of the blends is largely insensitive to the specific morphologies of the phases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastomers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immiscible blends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lallet, François</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0280-8594</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perriot, Antoine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lopez-Pamies, Oscar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1661-5598</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of solids and structures</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">290</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)31972039X</subfield><subfield code="w">(DE-600)2012750-9</subfield><subfield code="w">(DE-576)259271403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290</subfield></datafield></record></collection>
|
score |
7.401186 |