A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains
In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and...
Ausführliche Beschreibung
Autor*in: |
Yigit, Gulsemay [verfasserIn] Sarfaraz, Wakil [verfasserIn] Barreira, Raquel [verfasserIn] Madzvamuse, Anotida [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Reaction–cross–diffusion systems |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear analysis / Real world applications - Amsterdam [u.a.] : Elsevier Science, 2000, 77 |
---|---|
Übergeordnetes Werk: |
volume:77 |
DOI / URN: |
10.1016/j.nonrwa.2023.104042 |
---|
Katalog-ID: |
ELV066963109 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV066963109 | ||
003 | DE-627 | ||
005 | 20240209093328.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240209s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nonrwa.2023.104042 |2 doi | |
035 | |a (DE-627)ELV066963109 | ||
035 | |a (ELSEVIER)S1468-1218(23)00212-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.55 |2 bkl | ||
084 | |a 31.46 |2 bkl | ||
100 | 1 | |a Yigit, Gulsemay |e verfasserin |0 (orcid)0000-0003-4442-9151 |4 aut | |
245 | 1 | 0 | |a A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. | ||
650 | 4 | |a Reaction–cross–diffusion systems | |
650 | 4 | |a Domain-dependent instability | |
650 | 4 | |a Cross-diffusion-driven instability | |
650 | 4 | |a Pattern formation | |
650 | 4 | |a Spatiotemporal dynamics | |
650 | 4 | |a Circular disc domains | |
700 | 1 | |a Sarfaraz, Wakil |e verfasserin |4 aut | |
700 | 1 | |a Barreira, Raquel |e verfasserin |4 aut | |
700 | 1 | |a Madzvamuse, Anotida |e verfasserin |0 (orcid)0000-0002-9511-8903 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear analysis / Real world applications |d Amsterdam [u.a.] : Elsevier Science, 2000 |g 77 |h Online-Ressource |w (DE-627)336799039 |w (DE-600)2061967-4 |w (DE-576)099718286 |7 nnns |
773 | 1 | 8 | |g volume:77 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.55 |j Globale Analysis |q VZ |
936 | b | k | |a 31.46 |j Funktionalanalysis |q VZ |
951 | |a AR | ||
952 | |d 77 |
author_variant |
g y gy w s ws r b rb a m am |
---|---|
matchkey_str |
yigitgulsemaysarfarazwakilbarreiraraquel:2023----:dmidpnettbltaayioratodfuinytmwtlnacos |
hierarchy_sort_str |
2023 |
bklnumber |
31.55 31.46 |
publishDate |
2023 |
allfields |
10.1016/j.nonrwa.2023.104042 doi (DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 DE-627 ger DE-627 rda eng 510 VZ 31.55 bkl 31.46 bkl Yigit, Gulsemay verfasserin (orcid)0000-0003-4442-9151 aut A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains Sarfaraz, Wakil verfasserin aut Barreira, Raquel verfasserin aut Madzvamuse, Anotida verfasserin (orcid)0000-0002-9511-8903 aut Enthalten in Nonlinear analysis / Real world applications Amsterdam [u.a.] : Elsevier Science, 2000 77 Online-Ressource (DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 nnns volume:77 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 31.55 Globale Analysis VZ 31.46 Funktionalanalysis VZ AR 77 |
spelling |
10.1016/j.nonrwa.2023.104042 doi (DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 DE-627 ger DE-627 rda eng 510 VZ 31.55 bkl 31.46 bkl Yigit, Gulsemay verfasserin (orcid)0000-0003-4442-9151 aut A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains Sarfaraz, Wakil verfasserin aut Barreira, Raquel verfasserin aut Madzvamuse, Anotida verfasserin (orcid)0000-0002-9511-8903 aut Enthalten in Nonlinear analysis / Real world applications Amsterdam [u.a.] : Elsevier Science, 2000 77 Online-Ressource (DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 nnns volume:77 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 31.55 Globale Analysis VZ 31.46 Funktionalanalysis VZ AR 77 |
allfields_unstemmed |
10.1016/j.nonrwa.2023.104042 doi (DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 DE-627 ger DE-627 rda eng 510 VZ 31.55 bkl 31.46 bkl Yigit, Gulsemay verfasserin (orcid)0000-0003-4442-9151 aut A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains Sarfaraz, Wakil verfasserin aut Barreira, Raquel verfasserin aut Madzvamuse, Anotida verfasserin (orcid)0000-0002-9511-8903 aut Enthalten in Nonlinear analysis / Real world applications Amsterdam [u.a.] : Elsevier Science, 2000 77 Online-Ressource (DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 nnns volume:77 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 31.55 Globale Analysis VZ 31.46 Funktionalanalysis VZ AR 77 |
allfieldsGer |
10.1016/j.nonrwa.2023.104042 doi (DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 DE-627 ger DE-627 rda eng 510 VZ 31.55 bkl 31.46 bkl Yigit, Gulsemay verfasserin (orcid)0000-0003-4442-9151 aut A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains Sarfaraz, Wakil verfasserin aut Barreira, Raquel verfasserin aut Madzvamuse, Anotida verfasserin (orcid)0000-0002-9511-8903 aut Enthalten in Nonlinear analysis / Real world applications Amsterdam [u.a.] : Elsevier Science, 2000 77 Online-Ressource (DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 nnns volume:77 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 31.55 Globale Analysis VZ 31.46 Funktionalanalysis VZ AR 77 |
allfieldsSound |
10.1016/j.nonrwa.2023.104042 doi (DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 DE-627 ger DE-627 rda eng 510 VZ 31.55 bkl 31.46 bkl Yigit, Gulsemay verfasserin (orcid)0000-0003-4442-9151 aut A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains Sarfaraz, Wakil verfasserin aut Barreira, Raquel verfasserin aut Madzvamuse, Anotida verfasserin (orcid)0000-0002-9511-8903 aut Enthalten in Nonlinear analysis / Real world applications Amsterdam [u.a.] : Elsevier Science, 2000 77 Online-Ressource (DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 nnns volume:77 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 31.55 Globale Analysis VZ 31.46 Funktionalanalysis VZ AR 77 |
language |
English |
source |
Enthalten in Nonlinear analysis / Real world applications 77 volume:77 |
sourceStr |
Enthalten in Nonlinear analysis / Real world applications 77 volume:77 |
format_phy_str_mv |
Article |
bklname |
Globale Analysis Funktionalanalysis |
institution |
findex.gbv.de |
topic_facet |
Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear analysis / Real world applications |
authorswithroles_txt_mv |
Yigit, Gulsemay @@aut@@ Sarfaraz, Wakil @@aut@@ Barreira, Raquel @@aut@@ Madzvamuse, Anotida @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
336799039 |
dewey-sort |
3510 |
id |
ELV066963109 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066963109</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240209093328.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nonrwa.2023.104042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066963109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1468-1218(23)00212-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yigit, Gulsemay</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4442-9151</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction–cross–diffusion systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domain-dependent instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular disc domains</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarfaraz, Wakil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barreira, Raquel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madzvamuse, Anotida</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9511-8903</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear analysis / Real world applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2000</subfield><subfield code="g">77</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)336799039</subfield><subfield code="w">(DE-600)2061967-4</subfield><subfield code="w">(DE-576)099718286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.55</subfield><subfield code="j">Globale Analysis</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="j">Funktionalanalysis</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield></datafield></record></collection>
|
author |
Yigit, Gulsemay |
spellingShingle |
Yigit, Gulsemay ddc 510 bkl 31.55 bkl 31.46 misc Reaction–cross–diffusion systems misc Domain-dependent instability misc Cross-diffusion-driven instability misc Pattern formation misc Spatiotemporal dynamics misc Circular disc domains A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
authorStr |
Yigit, Gulsemay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)336799039 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 VZ 31.55 bkl 31.46 bkl A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains Reaction–cross–diffusion systems Domain-dependent instability Cross-diffusion-driven instability Pattern formation Spatiotemporal dynamics Circular disc domains |
topic |
ddc 510 bkl 31.55 bkl 31.46 misc Reaction–cross–diffusion systems misc Domain-dependent instability misc Cross-diffusion-driven instability misc Pattern formation misc Spatiotemporal dynamics misc Circular disc domains |
topic_unstemmed |
ddc 510 bkl 31.55 bkl 31.46 misc Reaction–cross–diffusion systems misc Domain-dependent instability misc Cross-diffusion-driven instability misc Pattern formation misc Spatiotemporal dynamics misc Circular disc domains |
topic_browse |
ddc 510 bkl 31.55 bkl 31.46 misc Reaction–cross–diffusion systems misc Domain-dependent instability misc Cross-diffusion-driven instability misc Pattern formation misc Spatiotemporal dynamics misc Circular disc domains |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nonlinear analysis / Real world applications |
hierarchy_parent_id |
336799039 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear analysis / Real world applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)336799039 (DE-600)2061967-4 (DE-576)099718286 |
title |
A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
ctrlnum |
(DE-627)ELV066963109 (ELSEVIER)S1468-1218(23)00212-2 |
title_full |
A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
author_sort |
Yigit, Gulsemay |
journal |
Nonlinear analysis / Real world applications |
journalStr |
Nonlinear analysis / Real world applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yigit, Gulsemay Sarfaraz, Wakil Barreira, Raquel Madzvamuse, Anotida |
container_volume |
77 |
class |
510 VZ 31.55 bkl 31.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yigit, Gulsemay |
doi_str_mv |
10.1016/j.nonrwa.2023.104042 |
normlink |
(ORCID)0000-0003-4442-9151 (ORCID)0000-0002-9511-8903 |
normlink_prefix_str_mv |
(orcid)0000-0003-4442-9151 (orcid)0000-0002-9511-8903 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
a domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
title_auth |
A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
abstract |
In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. |
abstractGer |
In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. |
abstract_unstemmed |
In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains |
remote_bool |
true |
author2 |
Sarfaraz, Wakil Barreira, Raquel Madzvamuse, Anotida |
author2Str |
Sarfaraz, Wakil Barreira, Raquel Madzvamuse, Anotida |
ppnlink |
336799039 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nonrwa.2023.104042 |
up_date |
2024-07-06T19:36:37.550Z |
_version_ |
1803859627921637376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV066963109</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240209093328.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nonrwa.2023.104042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV066963109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1468-1218(23)00212-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yigit, Gulsemay</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4442-9151</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we present theoretical considerations of, and analyse, the effects of circular geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type with linear cross-diffusion for a two-component system on circular domains. The highlights of our theoretical and computational findings are: (i) By employing linear stability analysis for a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains, we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-instability, dependent on the length scale of the geometry. These analytical studies involve cross-diffusion and circular geometry to unravel analytical conditions for the full computational classification of the parameter spaces that allow the system to exhibit Turing, Hopf and transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist in the absence of cross-diffusion nor when the conditions on the domain length are violated. (iii) To support our theoretical findings, finite element simulations illustrating the formation of spot patterns on circular domains are presented. Model parameter values are selected from parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv) A by-product of this study, is that an activator-depleted reaction–diffusion system with linear cross-diffusion on circular domains, appears to favour the formation of spot patterns for most of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays, which form on approximately circular domains during growth development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction–cross–diffusion systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domain-dependent instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular disc domains</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarfaraz, Wakil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barreira, Raquel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madzvamuse, Anotida</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9511-8903</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear analysis / Real world applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2000</subfield><subfield code="g">77</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)336799039</subfield><subfield code="w">(DE-600)2061967-4</subfield><subfield code="w">(DE-576)099718286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.55</subfield><subfield code="j">Globale Analysis</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="j">Funktionalanalysis</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield></datafield></record></collection>
|
score |
7.4008837 |