Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices
Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achievin...
Ausführliche Beschreibung
Autor*in: |
Serenko, Maria V. [verfasserIn] Prudnikov, Nikita V. [verfasserIn] Emelyanov, Andrey V. [verfasserIn] Stupnikov, Aleksei A. [verfasserIn] Malakhova, Yulia N. [verfasserIn] Savinov, Dmitry V. [verfasserIn] Erokhin, Victor V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Organic electronics - Amsterdam [u.a.] : Elsevier Science, 2000, 126 |
---|---|
Übergeordnetes Werk: |
volume:126 |
DOI / URN: |
10.1016/j.orgel.2024.107002 |
---|
Katalog-ID: |
ELV067004792 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067004792 | ||
003 | DE-627 | ||
005 | 20240213093024.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240213s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.orgel.2024.107002 |2 doi | |
035 | |a (DE-627)ELV067004792 | ||
035 | |a (ELSEVIER)S1566-1199(24)00013-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Serenko, Maria V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. | ||
650 | 4 | |a Organic memristive device | |
650 | 4 | |a Electrochemical device | |
650 | 4 | |a Resistive switching time | |
650 | 4 | |a Neuromorphic computing | |
700 | 1 | |a Prudnikov, Nikita V. |e verfasserin |4 aut | |
700 | 1 | |a Emelyanov, Andrey V. |e verfasserin |4 aut | |
700 | 1 | |a Stupnikov, Aleksei A. |e verfasserin |0 (orcid)0000-0003-1711-9756 |4 aut | |
700 | 1 | |a Malakhova, Yulia N. |e verfasserin |0 (orcid)0000-0003-3580-4538 |4 aut | |
700 | 1 | |a Savinov, Dmitry V. |e verfasserin |4 aut | |
700 | 1 | |a Erokhin, Victor V. |e verfasserin |0 (orcid)0000-0002-6297-5538 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Organic electronics |d Amsterdam [u.a.] : Elsevier Science, 2000 |g 126 |h Online-Ressource |w (DE-627)325570418 |w (DE-600)2037332-6 |w (DE-576)100645976 |7 nnns |
773 | 1 | 8 | |g volume:126 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.00 |j Technik allgemein: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 126 |
author_variant |
m v s mv mvs n v p nv nvp a v e av ave a a s aa aas y n m yn ynm d v s dv dvs v v e vv vve |
---|---|
matchkey_str |
serenkomariavprudnikovnikitavemelyanovan:2024----:eitvsicigieisflcrltgtdoynlnb |
hierarchy_sort_str |
2024 |
bklnumber |
50.00 |
publishDate |
2024 |
allfields |
10.1016/j.orgel.2024.107002 doi (DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 DE-627 ger DE-627 rda eng 670 VZ 50.00 bkl Serenko, Maria V. verfasserin aut Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing Prudnikov, Nikita V. verfasserin aut Emelyanov, Andrey V. verfasserin aut Stupnikov, Aleksei A. verfasserin (orcid)0000-0003-1711-9756 aut Malakhova, Yulia N. verfasserin (orcid)0000-0003-3580-4538 aut Savinov, Dmitry V. verfasserin aut Erokhin, Victor V. verfasserin (orcid)0000-0002-6297-5538 aut Enthalten in Organic electronics Amsterdam [u.a.] : Elsevier Science, 2000 126 Online-Ressource (DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 126 |
spelling |
10.1016/j.orgel.2024.107002 doi (DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 DE-627 ger DE-627 rda eng 670 VZ 50.00 bkl Serenko, Maria V. verfasserin aut Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing Prudnikov, Nikita V. verfasserin aut Emelyanov, Andrey V. verfasserin aut Stupnikov, Aleksei A. verfasserin (orcid)0000-0003-1711-9756 aut Malakhova, Yulia N. verfasserin (orcid)0000-0003-3580-4538 aut Savinov, Dmitry V. verfasserin aut Erokhin, Victor V. verfasserin (orcid)0000-0002-6297-5538 aut Enthalten in Organic electronics Amsterdam [u.a.] : Elsevier Science, 2000 126 Online-Ressource (DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 126 |
allfields_unstemmed |
10.1016/j.orgel.2024.107002 doi (DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 DE-627 ger DE-627 rda eng 670 VZ 50.00 bkl Serenko, Maria V. verfasserin aut Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing Prudnikov, Nikita V. verfasserin aut Emelyanov, Andrey V. verfasserin aut Stupnikov, Aleksei A. verfasserin (orcid)0000-0003-1711-9756 aut Malakhova, Yulia N. verfasserin (orcid)0000-0003-3580-4538 aut Savinov, Dmitry V. verfasserin aut Erokhin, Victor V. verfasserin (orcid)0000-0002-6297-5538 aut Enthalten in Organic electronics Amsterdam [u.a.] : Elsevier Science, 2000 126 Online-Ressource (DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 126 |
allfieldsGer |
10.1016/j.orgel.2024.107002 doi (DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 DE-627 ger DE-627 rda eng 670 VZ 50.00 bkl Serenko, Maria V. verfasserin aut Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing Prudnikov, Nikita V. verfasserin aut Emelyanov, Andrey V. verfasserin aut Stupnikov, Aleksei A. verfasserin (orcid)0000-0003-1711-9756 aut Malakhova, Yulia N. verfasserin (orcid)0000-0003-3580-4538 aut Savinov, Dmitry V. verfasserin aut Erokhin, Victor V. verfasserin (orcid)0000-0002-6297-5538 aut Enthalten in Organic electronics Amsterdam [u.a.] : Elsevier Science, 2000 126 Online-Ressource (DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 126 |
allfieldsSound |
10.1016/j.orgel.2024.107002 doi (DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 DE-627 ger DE-627 rda eng 670 VZ 50.00 bkl Serenko, Maria V. verfasserin aut Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing Prudnikov, Nikita V. verfasserin aut Emelyanov, Andrey V. verfasserin aut Stupnikov, Aleksei A. verfasserin (orcid)0000-0003-1711-9756 aut Malakhova, Yulia N. verfasserin (orcid)0000-0003-3580-4538 aut Savinov, Dmitry V. verfasserin aut Erokhin, Victor V. verfasserin (orcid)0000-0002-6297-5538 aut Enthalten in Organic electronics Amsterdam [u.a.] : Elsevier Science, 2000 126 Online-Ressource (DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 nnns volume:126 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.00 Technik allgemein: Allgemeines VZ AR 126 |
language |
English |
source |
Enthalten in Organic electronics 126 volume:126 |
sourceStr |
Enthalten in Organic electronics 126 volume:126 |
format_phy_str_mv |
Article |
bklname |
Technik allgemein: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Organic electronics |
authorswithroles_txt_mv |
Serenko, Maria V. @@aut@@ Prudnikov, Nikita V. @@aut@@ Emelyanov, Andrey V. @@aut@@ Stupnikov, Aleksei A. @@aut@@ Malakhova, Yulia N. @@aut@@ Savinov, Dmitry V. @@aut@@ Erokhin, Victor V. @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
325570418 |
dewey-sort |
3670 |
id |
ELV067004792 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067004792</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240213093024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240213s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.orgel.2024.107002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067004792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1566-1199(24)00013-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serenko, Maria V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic memristive device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistive switching time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prudnikov, Nikita V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Emelyanov, Andrey V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stupnikov, Aleksei A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1711-9756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malakhova, Yulia N.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3580-4538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savinov, Dmitry V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erokhin, Victor V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6297-5538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Organic electronics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2000</subfield><subfield code="g">126</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)325570418</subfield><subfield code="w">(DE-600)2037332-6</subfield><subfield code="w">(DE-576)100645976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="j">Technik allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield></datafield></record></collection>
|
author |
Serenko, Maria V. |
spellingShingle |
Serenko, Maria V. ddc 670 bkl 50.00 misc Organic memristive device misc Electrochemical device misc Resistive switching time misc Neuromorphic computing Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
authorStr |
Serenko, Maria V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325570418 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 VZ 50.00 bkl Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices Organic memristive device Electrochemical device Resistive switching time Neuromorphic computing |
topic |
ddc 670 bkl 50.00 misc Organic memristive device misc Electrochemical device misc Resistive switching time misc Neuromorphic computing |
topic_unstemmed |
ddc 670 bkl 50.00 misc Organic memristive device misc Electrochemical device misc Resistive switching time misc Neuromorphic computing |
topic_browse |
ddc 670 bkl 50.00 misc Organic memristive device misc Electrochemical device misc Resistive switching time misc Neuromorphic computing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Organic electronics |
hierarchy_parent_id |
325570418 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Organic electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325570418 (DE-600)2037332-6 (DE-576)100645976 |
title |
Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
ctrlnum |
(DE-627)ELV067004792 (ELSEVIER)S1566-1199(24)00013-2 |
title_full |
Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
author_sort |
Serenko, Maria V. |
journal |
Organic electronics |
journalStr |
Organic electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Serenko, Maria V. Prudnikov, Nikita V. Emelyanov, Andrey V. Stupnikov, Aleksei A. Malakhova, Yulia N. Savinov, Dmitry V. Erokhin, Victor V. |
container_volume |
126 |
class |
670 VZ 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Serenko, Maria V. |
doi_str_mv |
10.1016/j.orgel.2024.107002 |
normlink |
(ORCID)0000-0003-1711-9756 (ORCID)0000-0003-3580-4538 (ORCID)0000-0002-6297-5538 |
normlink_prefix_str_mv |
(orcid)0000-0003-1711-9756 (orcid)0000-0003-3580-4538 (orcid)0000-0002-6297-5538 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
title_auth |
Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
abstract |
Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. |
abstractGer |
Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. |
abstract_unstemmed |
Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices |
remote_bool |
true |
author2 |
Prudnikov, Nikita V. Emelyanov, Andrey V. Stupnikov, Aleksei A. Malakhova, Yulia N. Savinov, Dmitry V. Erokhin, Victor V. |
author2Str |
Prudnikov, Nikita V. Emelyanov, Andrey V. Stupnikov, Aleksei A. Malakhova, Yulia N. Savinov, Dmitry V. Erokhin, Victor V. |
ppnlink |
325570418 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.orgel.2024.107002 |
up_date |
2024-07-06T19:45:26.513Z |
_version_ |
1803860182580592640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067004792</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240213093024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240213s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.orgel.2024.107002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067004792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1566-1199(24)00013-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serenko, Maria V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resistive switching kinetics of electrolyte-gated polyaniline-based memristive devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Memristive devices have a multitude of potential applications, ranging from neuromorphic computing systems and chips to bioprosthetic, each demanding distinct characteristics and features. Among these attributes, the time of resistive switching stands out as one of the most important items. Achieving synchronization between switching rates of memristive devices and existing systems that they complement, either CMOS or biological, is of crucial importance. Moreover, switching time defines energy consumption. Organic memristive devices, particularly those built upon semiconductive polymer polyaniline (PANI), exhibit promising attributes. The primary parameter of a PANI-based memristor is the thickness of the active polymer film. This study provides an insight into the dependency of switching time of PANI–based memristive devices on the thickness of the film and a comprehensive analysis of a switching process itself. Throughout the investigation, it is found that the switching time to conductive state decreases with diminishing PANI film thickness, until reaching a threshold, beyond that the trend reverses. In contrast, devices featuring PANI film thicknesses ranging from 10 to 20 nm exhibit the swiftest switching behavior and are thus considered as an optimal choice for further applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic memristive device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistive switching time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prudnikov, Nikita V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Emelyanov, Andrey V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stupnikov, Aleksei A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1711-9756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malakhova, Yulia N.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3580-4538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savinov, Dmitry V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erokhin, Victor V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6297-5538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Organic electronics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2000</subfield><subfield code="g">126</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)325570418</subfield><subfield code="w">(DE-600)2037332-6</subfield><subfield code="w">(DE-576)100645976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="j">Technik allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield></datafield></record></collection>
|
score |
7.4013557 |