Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology
In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS p...
Ausführliche Beschreibung
Autor*in: |
Zhang, Yulin [verfasserIn] Zhao, Xiao [verfasserIn] Wang, Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of electronics and communications - München : Elsevier, 2011, 176 |
---|---|
Übergeordnetes Werk: |
volume:176 |
DOI / URN: |
10.1016/j.aeue.2024.155126 |
---|
Katalog-ID: |
ELV067026567 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067026567 | ||
003 | DE-627 | ||
005 | 20240214093156.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240214s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aeue.2024.155126 |2 doi | |
035 | |a (DE-627)ELV067026567 | ||
035 | |a (ELSEVIER)S1434-8411(24)00011-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
100 | 1 | |a Zhang, Yulin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. | ||
650 | 4 | |a High temperature resistance | |
650 | 4 | |a Low noise amplifier | |
650 | 4 | |a Instrument amplifier | |
650 | 4 | |a Gain accuracy improvement | |
700 | 1 | |a Zhao, Xiao |e verfasserin |0 (orcid)0000-0001-6341-5260 |4 aut | |
700 | 1 | |a Wang, Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of electronics and communications |d München : Elsevier, 2011 |g 176 |w (DE-627)329270273 |w (DE-600)2046900-7 |x 143-48411 |7 nnns |
773 | 1 | 8 | |g volume:176 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 176 |
author_variant |
y z yz x z xz c w cw |
---|---|
matchkey_str |
article:14348411:2024----::einfhgtmeaueeitnisrmnapiirsnhgtmeauea |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1016/j.aeue.2024.155126 doi (DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 DE-627 ger DE-627 rda eng 004 620 VZ Zhang, Yulin verfasserin aut Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement Zhao, Xiao verfasserin (orcid)0000-0001-6341-5260 aut Wang, Chen verfasserin aut Enthalten in International journal of electronics and communications München : Elsevier, 2011 176 (DE-627)329270273 (DE-600)2046900-7 143-48411 nnns volume:176 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 176 |
spelling |
10.1016/j.aeue.2024.155126 doi (DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 DE-627 ger DE-627 rda eng 004 620 VZ Zhang, Yulin verfasserin aut Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement Zhao, Xiao verfasserin (orcid)0000-0001-6341-5260 aut Wang, Chen verfasserin aut Enthalten in International journal of electronics and communications München : Elsevier, 2011 176 (DE-627)329270273 (DE-600)2046900-7 143-48411 nnns volume:176 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 176 |
allfields_unstemmed |
10.1016/j.aeue.2024.155126 doi (DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 DE-627 ger DE-627 rda eng 004 620 VZ Zhang, Yulin verfasserin aut Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement Zhao, Xiao verfasserin (orcid)0000-0001-6341-5260 aut Wang, Chen verfasserin aut Enthalten in International journal of electronics and communications München : Elsevier, 2011 176 (DE-627)329270273 (DE-600)2046900-7 143-48411 nnns volume:176 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 176 |
allfieldsGer |
10.1016/j.aeue.2024.155126 doi (DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 DE-627 ger DE-627 rda eng 004 620 VZ Zhang, Yulin verfasserin aut Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement Zhao, Xiao verfasserin (orcid)0000-0001-6341-5260 aut Wang, Chen verfasserin aut Enthalten in International journal of electronics and communications München : Elsevier, 2011 176 (DE-627)329270273 (DE-600)2046900-7 143-48411 nnns volume:176 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 176 |
allfieldsSound |
10.1016/j.aeue.2024.155126 doi (DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 DE-627 ger DE-627 rda eng 004 620 VZ Zhang, Yulin verfasserin aut Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement Zhao, Xiao verfasserin (orcid)0000-0001-6341-5260 aut Wang, Chen verfasserin aut Enthalten in International journal of electronics and communications München : Elsevier, 2011 176 (DE-627)329270273 (DE-600)2046900-7 143-48411 nnns volume:176 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 176 |
language |
English |
source |
Enthalten in International journal of electronics and communications 176 volume:176 |
sourceStr |
Enthalten in International journal of electronics and communications 176 volume:176 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of electronics and communications |
authorswithroles_txt_mv |
Zhang, Yulin @@aut@@ Zhao, Xiao @@aut@@ Wang, Chen @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
329270273 |
dewey-sort |
14 |
id |
ELV067026567 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067026567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240214s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aeue.2024.155126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067026567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1434-8411(24)00011-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low noise amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrument amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gain accuracy improvement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6341-5260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electronics and communications</subfield><subfield code="d">München : Elsevier, 2011</subfield><subfield code="g">176</subfield><subfield code="w">(DE-627)329270273</subfield><subfield code="w">(DE-600)2046900-7</subfield><subfield code="x">143-48411</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield></datafield></record></collection>
|
author |
Zhang, Yulin |
spellingShingle |
Zhang, Yulin ddc 004 misc High temperature resistance misc Low noise amplifier misc Instrument amplifier misc Gain accuracy improvement Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
authorStr |
Zhang, Yulin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)329270273 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
143-48411 |
topic_title |
004 620 VZ Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology High temperature resistance Low noise amplifier Instrument amplifier Gain accuracy improvement |
topic |
ddc 004 misc High temperature resistance misc Low noise amplifier misc Instrument amplifier misc Gain accuracy improvement |
topic_unstemmed |
ddc 004 misc High temperature resistance misc Low noise amplifier misc Instrument amplifier misc Gain accuracy improvement |
topic_browse |
ddc 004 misc High temperature resistance misc Low noise amplifier misc Instrument amplifier misc Gain accuracy improvement |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of electronics and communications |
hierarchy_parent_id |
329270273 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
International journal of electronics and communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)329270273 (DE-600)2046900-7 |
title |
Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
ctrlnum |
(DE-627)ELV067026567 (ELSEVIER)S1434-8411(24)00011-6 |
title_full |
Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
author_sort |
Zhang, Yulin |
journal |
International journal of electronics and communications |
journalStr |
International journal of electronics and communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Yulin Zhao, Xiao Wang, Chen |
container_volume |
176 |
class |
004 620 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Yulin |
doi_str_mv |
10.1016/j.aeue.2024.155126 |
normlink |
(ORCID)0000-0001-6341-5260 |
normlink_prefix_str_mv |
(orcid)0000-0001-6341-5260 |
dewey-full |
004 620 |
author2-role |
verfasserin |
title_sort |
design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
title_auth |
Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
abstract |
In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. |
abstractGer |
In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. |
abstract_unstemmed |
In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology |
remote_bool |
true |
author2 |
Zhao, Xiao Wang, Chen |
author2Str |
Zhao, Xiao Wang, Chen |
ppnlink |
329270273 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aeue.2024.155126 |
up_date |
2024-07-06T19:49:35.947Z |
_version_ |
1803860444131098624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067026567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214093156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240214s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aeue.2024.155126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067026567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1434-8411(24)00011-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of a high temperature resistant instrument amplifier using high temperature gain self-calibration technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to solve the problems of offset voltage, noise increase and closed-loop gain accuracy degradation caused by high temperature, a low-noise instrument amplifier with high-temperature gain self-calibration technology (HGST) is designed under SMIC 0.18 μ m CMOS process, and a low-noise operational amplifier with low offset voltage and low noise is composed of dual op amps. The op amp adopts a two-stage amplification, three-stage chopper modulation structure, with an operating voltage range of 1.8–2.5 V, a quiescent current consumption of 100 μ A, and a chopper clock frequency of 250 kHz. The simulation results show that the equivalent input noise spectral density at 1 Hz is 57.8 nV/ Hz , the thermal noise is 34.5 nV/ Hz , and the DC offset voltage range is 127.15 μ V. In the case of a 100 °C environment with an ideal output peak value of 127.6 mV, the high-temperature gain self-calibration technology proposed in this paper can increase the peak output voltage of 120.2 mV to 126.0 mV, reduce the voltage error by 5.8 mV, and optimize the temperature coefficient from 535.43 ppm/°C to 86.55 ppm/°C. The simulation results show that the proposed high-temperature gain self-calibration technology can solve the problems of offset voltage, noise increase and closed-loop gain accuracy decrease in high-temperature environment. This means that the instrument amplifier can be used as one of the important components of the geophone in high-temperature environments such as deep well detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low noise amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrument amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gain accuracy improvement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6341-5260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electronics and communications</subfield><subfield code="d">München : Elsevier, 2011</subfield><subfield code="g">176</subfield><subfield code="w">(DE-627)329270273</subfield><subfield code="w">(DE-600)2046900-7</subfield><subfield code="x">143-48411</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield></datafield></record></collection>
|
score |
7.4021063 |