A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity
Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture...
Ausführliche Beschreibung
Autor*in: |
Zhu, Wenquan [verfasserIn] Yang, Xinyi [verfasserIn] Liu, Ruoyang [verfasserIn] Zhao, Cenliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of applied earth observation and geoinformation - Amsterdam [u.a.] : Elsevier Science, 1999, 127 |
---|---|
Übergeordnetes Werk: |
volume:127 |
DOI / URN: |
10.1016/j.jag.2024.103698 |
---|
Katalog-ID: |
ELV067110215 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067110215 | ||
003 | DE-627 | ||
005 | 20240219093029.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240219s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jag.2024.103698 |2 doi | |
035 | |a (DE-627)ELV067110215 | ||
035 | |a (ELSEVIER)S1569-8432(24)00052-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a KARTEN |q DE-1a |2 fid | ||
084 | |a 38.03 |2 bkl | ||
084 | |a 74.48 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Zhu, Wenquan |e verfasserin |0 (orcid)0000-0003-3011-444X |4 aut | |
245 | 1 | 0 | |a A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. | ||
650 | 4 | |a Remote sensing images | |
650 | 4 | |a Texture | |
650 | 4 | |a Feature extraction | |
650 | 4 | |a Spatial arrangement | |
650 | 4 | |a Object recognition | |
700 | 1 | |a Yang, Xinyi |e verfasserin |0 (orcid)0000-0003-1811-8341 |4 aut | |
700 | 1 | |a Liu, Ruoyang |e verfasserin |0 (orcid)0000-0001-6526-0370 |4 aut | |
700 | 1 | |a Zhao, Cenliang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of applied earth observation and geoinformation |d Amsterdam [u.a.] : Elsevier Science, 1999 |g 127 |h Online-Ressource |w (DE-627)359784119 |w (DE-600)2097960-5 |w (DE-576)25927254X |x 1872-826X |7 nnns |
773 | 1 | 8 | |g volume:127 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-KARTEN | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.03 |j Methoden und Techniken der Geowissenschaften |q VZ |
936 | b | k | |a 74.48 |j Geoinformationssysteme |q VZ |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |q VZ |
951 | |a AR | ||
952 | |d 127 |
author_variant |
w z wz x y xy r l rl c z cz |
---|---|
matchkey_str |
article:1872826X:2024----::nwetretatoagrtmomauighsailragmnotxuermt |
hierarchy_sort_str |
2024 |
bklnumber |
38.03 74.48 74.41 |
publishDate |
2024 |
allfields |
10.1016/j.jag.2024.103698 doi (DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 DE-627 ger DE-627 rda eng 550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Zhu, Wenquan verfasserin (orcid)0000-0003-3011-444X aut A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. Remote sensing images Texture Feature extraction Spatial arrangement Object recognition Yang, Xinyi verfasserin (orcid)0000-0003-1811-8341 aut Liu, Ruoyang verfasserin (orcid)0000-0001-6526-0370 aut Zhao, Cenliang verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 127 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:127 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften VZ 74.48 Geoinformationssysteme VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 127 |
spelling |
10.1016/j.jag.2024.103698 doi (DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 DE-627 ger DE-627 rda eng 550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Zhu, Wenquan verfasserin (orcid)0000-0003-3011-444X aut A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. Remote sensing images Texture Feature extraction Spatial arrangement Object recognition Yang, Xinyi verfasserin (orcid)0000-0003-1811-8341 aut Liu, Ruoyang verfasserin (orcid)0000-0001-6526-0370 aut Zhao, Cenliang verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 127 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:127 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften VZ 74.48 Geoinformationssysteme VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 127 |
allfields_unstemmed |
10.1016/j.jag.2024.103698 doi (DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 DE-627 ger DE-627 rda eng 550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Zhu, Wenquan verfasserin (orcid)0000-0003-3011-444X aut A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. Remote sensing images Texture Feature extraction Spatial arrangement Object recognition Yang, Xinyi verfasserin (orcid)0000-0003-1811-8341 aut Liu, Ruoyang verfasserin (orcid)0000-0001-6526-0370 aut Zhao, Cenliang verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 127 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:127 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften VZ 74.48 Geoinformationssysteme VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 127 |
allfieldsGer |
10.1016/j.jag.2024.103698 doi (DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 DE-627 ger DE-627 rda eng 550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Zhu, Wenquan verfasserin (orcid)0000-0003-3011-444X aut A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. Remote sensing images Texture Feature extraction Spatial arrangement Object recognition Yang, Xinyi verfasserin (orcid)0000-0003-1811-8341 aut Liu, Ruoyang verfasserin (orcid)0000-0001-6526-0370 aut Zhao, Cenliang verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 127 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:127 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften VZ 74.48 Geoinformationssysteme VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 127 |
allfieldsSound |
10.1016/j.jag.2024.103698 doi (DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 DE-627 ger DE-627 rda eng 550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Zhu, Wenquan verfasserin (orcid)0000-0003-3011-444X aut A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. Remote sensing images Texture Feature extraction Spatial arrangement Object recognition Yang, Xinyi verfasserin (orcid)0000-0003-1811-8341 aut Liu, Ruoyang verfasserin (orcid)0000-0001-6526-0370 aut Zhao, Cenliang verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 127 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:127 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften VZ 74.48 Geoinformationssysteme VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 127 |
language |
English |
source |
Enthalten in International journal of applied earth observation and geoinformation 127 volume:127 |
sourceStr |
Enthalten in International journal of applied earth observation and geoinformation 127 volume:127 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Geowissenschaften Geoinformationssysteme Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Remote sensing images Texture Feature extraction Spatial arrangement Object recognition |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
International journal of applied earth observation and geoinformation |
authorswithroles_txt_mv |
Zhu, Wenquan @@aut@@ Yang, Xinyi @@aut@@ Liu, Ruoyang @@aut@@ Zhao, Cenliang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
359784119 |
dewey-sort |
3550 |
id |
ELV067110215 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067110215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240219s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2024.103698</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067110215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1569-8432(24)00052-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">KARTEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Wenquan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3011-444X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial arrangement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object recognition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1811-8341</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ruoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6526-0370</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Cenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of applied earth observation and geoinformation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">127</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="w">(DE-576)25927254X</subfield><subfield code="x">1872-826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-KARTEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="j">Geoinformationssysteme</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield></datafield></record></collection>
|
author |
Zhu, Wenquan |
spellingShingle |
Zhu, Wenquan ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Remote sensing images misc Texture misc Feature extraction misc Spatial arrangement misc Object recognition A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
authorStr |
Zhu, Wenquan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)359784119 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-826X |
topic_title |
550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity Remote sensing images Texture Feature extraction Spatial arrangement Object recognition |
topic |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Remote sensing images misc Texture misc Feature extraction misc Spatial arrangement misc Object recognition |
topic_unstemmed |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Remote sensing images misc Texture misc Feature extraction misc Spatial arrangement misc Object recognition |
topic_browse |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Remote sensing images misc Texture misc Feature extraction misc Spatial arrangement misc Object recognition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of applied earth observation and geoinformation |
hierarchy_parent_id |
359784119 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
International journal of applied earth observation and geoinformation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X |
title |
A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
ctrlnum |
(DE-627)ELV067110215 (ELSEVIER)S1569-8432(24)00052-9 |
title_full |
A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
author_sort |
Zhu, Wenquan |
journal |
International journal of applied earth observation and geoinformation |
journalStr |
International journal of applied earth observation and geoinformation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Zhu, Wenquan Yang, Xinyi Liu, Ruoyang Zhao, Cenliang |
container_volume |
127 |
class |
550 VZ KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Wenquan |
doi_str_mv |
10.1016/j.jag.2024.103698 |
normlink |
(ORCID)0000-0003-3011-444X (ORCID)0000-0003-1811-8341 (ORCID)0000-0001-6526-0370 |
normlink_prefix_str_mv |
(orcid)0000-0003-3011-444X (orcid)0000-0003-1811-8341 (orcid)0000-0001-6526-0370 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
a new feature extraction algorithm for measuring the spatial arrangement of texture primitives: distance coding diversity |
title_auth |
A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
abstract |
Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. |
abstractGer |
Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. |
abstract_unstemmed |
Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity |
remote_bool |
true |
author2 |
Yang, Xinyi Liu, Ruoyang Zhao, Cenliang |
author2Str |
Yang, Xinyi Liu, Ruoyang Zhao, Cenliang |
ppnlink |
359784119 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jag.2024.103698 |
up_date |
2024-07-06T20:07:46.738Z |
_version_ |
1803861587908362240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067110215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240219093029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240219s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2024.103698</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067110215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1569-8432(24)00052-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">KARTEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Wenquan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3011-444X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Texture is a key spatial feature for object recognition in remote sensing images. Currently, most texture feature extraction methods mainly focus on the repeated patterns of texture primitives (the basic texture units) but rarely consider their spatial arrangement. Although some methods can capture the spatial arrangement of texture primitives to some extent, their principles and algorithms are complex and difficult to implement. In this study, we proposed a new statistical feature extraction method, called distance coding diversity (DCD), which can measure the spatial arrangement of texture primitives with a rotation invariant characteristic. The texture features extracted by DCD were widely tested on a large dataset at three different scales: 50 digital matrix samples at the pixel neighborhood scale, 2508 pairs of small block images of pre- and post-damaged buildings at the image object scale, and five large-scale images covering different main land cover types (cropland, buildings, plantations, natural vegetation and abandoned dumps) at the regional landscape scale, and the test results were compared with Entropy of Grey-level Co-occurrence Matrix (GLCM) and Short Run Emphasis (SRE) of Grey Level Run Length Matrix (GLRLM). DCD can effectively measure the spatial arrangement of texture primitives, and its sensitivity to spatial arrangement is 98%, which is more than 5 times that of SRE (with a sensitivity value of 18%). The identification accuracy for different land cover types based on DCD improved by 12.31% over Entropy, and 14.40% over SRE. Due to the simple algorithm and superior performance, DCD can be widely used for object recognition and land cover/use classification and has wide application prospects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial arrangement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object recognition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1811-8341</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ruoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6526-0370</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Cenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of applied earth observation and geoinformation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">127</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="w">(DE-576)25927254X</subfield><subfield code="x">1872-826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-KARTEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="j">Geoinformationssysteme</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield></datafield></record></collection>
|
score |
7.402524 |