Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition
Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model...
Ausführliche Beschreibung
Autor*in: |
Li, Zhen-huan [verfasserIn] Wei, Lin-yang [verfasserIn] Yang, Tian-hua [verfasserIn] Zhang, Tao [verfasserIn] Li, Run-dong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 223 |
---|---|
Übergeordnetes Werk: |
volume:223 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2024.125230 |
---|
Katalog-ID: |
ELV067117902 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067117902 | ||
003 | DE-627 | ||
005 | 20240221093021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240221s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2024.125230 |2 doi | |
035 | |a (DE-627)ELV067117902 | ||
035 | |a (ELSEVIER)S0017-9310(24)00062-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Li, Zhen-huan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. | ||
650 | 4 | |a Double-pipe heat exchanger | |
650 | 4 | |a Porous foam | |
650 | 4 | |a Coupled convection and radiation | |
650 | 4 | |a Surrogated model | |
650 | 4 | |a Multi-objective optimization | |
700 | 1 | |a Wei, Lin-yang |e verfasserin |4 aut | |
700 | 1 | |a Yang, Tian-hua |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Tao |e verfasserin |0 (orcid)0000-0001-7412-7539 |4 aut | |
700 | 1 | |a Li, Run-dong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 223 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:223 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 223 |
author_variant |
z h l zhl l y w lyw t h y thy t z tz r d l rdl |
---|---|
matchkey_str |
article:18792189:2024----::utojciepiiainfhfaflecutrlwobeieetxhneud |
hierarchy_sort_str |
2024 |
bklnumber |
50.38 |
publishDate |
2024 |
allfields |
10.1016/j.ijheatmasstransfer.2024.125230 doi (DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Zhen-huan verfasserin aut Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization Wei, Lin-yang verfasserin aut Yang, Tian-hua verfasserin aut Zhang, Tao verfasserin (orcid)0000-0001-7412-7539 aut Li, Run-dong verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 223 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 223 |
spelling |
10.1016/j.ijheatmasstransfer.2024.125230 doi (DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Zhen-huan verfasserin aut Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization Wei, Lin-yang verfasserin aut Yang, Tian-hua verfasserin aut Zhang, Tao verfasserin (orcid)0000-0001-7412-7539 aut Li, Run-dong verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 223 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 223 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2024.125230 doi (DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Zhen-huan verfasserin aut Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization Wei, Lin-yang verfasserin aut Yang, Tian-hua verfasserin aut Zhang, Tao verfasserin (orcid)0000-0001-7412-7539 aut Li, Run-dong verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 223 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 223 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2024.125230 doi (DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Zhen-huan verfasserin aut Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization Wei, Lin-yang verfasserin aut Yang, Tian-hua verfasserin aut Zhang, Tao verfasserin (orcid)0000-0001-7412-7539 aut Li, Run-dong verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 223 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 223 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2024.125230 doi (DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Zhen-huan verfasserin aut Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization Wei, Lin-yang verfasserin aut Yang, Tian-hua verfasserin aut Zhang, Tao verfasserin (orcid)0000-0001-7412-7539 aut Li, Run-dong verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 223 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 223 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 223 volume:223 |
sourceStr |
Enthalten in International journal of heat and mass transfer 223 volume:223 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Li, Zhen-huan @@aut@@ Wei, Lin-yang @@aut@@ Yang, Tian-hua @@aut@@ Zhang, Tao @@aut@@ Li, Run-dong @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV067117902 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067117902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240221093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240221s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2024.125230</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067117902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(24)00062-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhen-huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-pipe heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous foam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled convection and radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogated model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lin-yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tian-hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7412-7539</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Run-dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">223</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield></datafield></record></collection>
|
author |
Li, Zhen-huan |
spellingShingle |
Li, Zhen-huan ddc 620 bkl 50.38 misc Double-pipe heat exchanger misc Porous foam misc Coupled convection and radiation misc Surrogated model misc Multi-objective optimization Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
authorStr |
Li, Zhen-huan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 VZ 50.38 bkl Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition Double-pipe heat exchanger Porous foam Coupled convection and radiation Surrogated model Multi-objective optimization |
topic |
ddc 620 bkl 50.38 misc Double-pipe heat exchanger misc Porous foam misc Coupled convection and radiation misc Surrogated model misc Multi-objective optimization |
topic_unstemmed |
ddc 620 bkl 50.38 misc Double-pipe heat exchanger misc Porous foam misc Coupled convection and radiation misc Surrogated model misc Multi-objective optimization |
topic_browse |
ddc 620 bkl 50.38 misc Double-pipe heat exchanger misc Porous foam misc Coupled convection and radiation misc Surrogated model misc Multi-objective optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
ctrlnum |
(DE-627)ELV067117902 (ELSEVIER)S0017-9310(24)00062-0 |
title_full |
Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
author_sort |
Li, Zhen-huan |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Li, Zhen-huan Wei, Lin-yang Yang, Tian-hua Zhang, Tao Li, Run-dong |
container_volume |
223 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Zhen-huan |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2024.125230 |
normlink |
(ORCID)0000-0001-7412-7539 |
normlink_prefix_str_mv |
(orcid)0000-0001-7412-7539 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
title_auth |
Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
abstract |
Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. |
abstractGer |
Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. |
abstract_unstemmed |
Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition |
remote_bool |
true |
author2 |
Wei, Lin-yang Yang, Tian-hua Zhang, Tao Li, Run-dong |
author2Str |
Wei, Lin-yang Yang, Tian-hua Zhang, Tao Li, Run-dong |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2024.125230 |
up_date |
2024-07-06T20:09:26.841Z |
_version_ |
1803861692872916992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067117902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240221093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240221s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2024.125230</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067117902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(24)00062-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhen-huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-objective optimization of the foam filled counterflow double-pipe heat exchanger under high temperature condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Double-pipe heat exchanger (DPHE) filled with porous foam is a promising heat transfer enhancement device that could be applicable for high temperature applications. At present, complex coupled heat transfer process hinders the optimization design. In this study, a multi-objective optimization model that integrates the support vector regression (SVR) and non-dominated sorting genetic algorithm (NSGA-II) is employed for considering the trade-off relationship between heat transfer and pressure drop. A complete conjugated heat transfer model is established to obtain performance indicators: the Nusselt number (Nu) and the friction factor (f r). The Local Thermal Non-equilibrium (LTNE) effect and interfacial wall coupling effect are considered. And Monte Carlo method (MCM) is adopted to solve radiative heat transfer. Porosity and pore density of the porous foam are considered as design variables. The surrogated model is established by utilizing Latin hypercube sampling and sequential design scheme based on the converging Pareto-frontier. The results show that Nu tends to be enhanced when a low pore density and high porosity foam block is filled in the inner pipe, which matches that filling for the annular pipe with reverse structural parameters. A compromised solution provides the optimal combination of design variables by weighting the two performance indicators. An increase of 7.5% in Nu and decrease of 60.5% in f r are respectively achieved, when it is compared with the results based on single-objective indicator reported by other authors. These results reveal that this multi-objective optimization strategy is effective for optimizing the thermohydraulic performance of foam filled DPHE with thermal radiation effect considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-pipe heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous foam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled convection and radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogated model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lin-yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tian-hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7412-7539</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Run-dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">223</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield></datafield></record></collection>
|
score |
7.401269 |