Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis
High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stabil...
Ausführliche Beschreibung
Autor*in: |
Bian, Haowei [verfasserIn] Wang, Chunyang [verfasserIn] Zhao, Shen [verfasserIn] Han, Guoqiang [verfasserIn] Xie, Guangwen [verfasserIn] Qi, Peng [verfasserIn] Liu, Xin [verfasserIn] Zeng, Yan [verfasserIn] Zhang, Dun [verfasserIn] Wang, Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of hydrogen energy - New York, NY [u.a.] : Elsevier, 1976, 57, Seite 651-659 |
---|---|
Übergeordnetes Werk: |
volume:57 ; pages:651-659 |
DOI / URN: |
10.1016/j.ijhydene.2023.12.271 |
---|
Katalog-ID: |
ELV067143008 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067143008 | ||
003 | DE-627 | ||
005 | 20240222093122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240222s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2023.12.271 |2 doi | |
035 | |a (DE-627)ELV067143008 | ||
035 | |a (ELSEVIER)S0360-3199(23)06571-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Bian, Haowei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. | ||
650 | 4 | |a High entropy alloy | |
650 | 4 | |a OER | |
650 | 4 | |a Electrodeposition | |
650 | 4 | |a Synergistic effect | |
650 | 4 | |a Corrosion engineering | |
700 | 1 | |a Wang, Chunyang |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Shen |e verfasserin |4 aut | |
700 | 1 | |a Han, Guoqiang |e verfasserin |4 aut | |
700 | 1 | |a Xie, Guangwen |e verfasserin |4 aut | |
700 | 1 | |a Qi, Peng |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xin |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Yan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Dun |e verfasserin |4 aut | |
700 | 1 | |a Wang, Peng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of hydrogen energy |d New York, NY [u.a.] : Elsevier, 1976 |g 57, Seite 651-659 |h Online-Ressource |w (DE-627)301511357 |w (DE-600)1484487-4 |w (DE-576)096806397 |x 1879-3487 |7 nnns |
773 | 1 | 8 | |g volume:57 |g pages:651-659 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 57 |h 651-659 |
author_variant |
h b hb c w cw s z sz g h gh g x gx p q pq x l xl y z yz d z dz p w pw |
---|---|
matchkey_str |
article:18793487:2023----::rprtoohglefcetihnrpalyaaytwteetoeoiinncroin |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.ijhydene.2023.12.271 doi (DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bian, Haowei verfasserin aut Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering Wang, Chunyang verfasserin aut Zhao, Shen verfasserin aut Han, Guoqiang verfasserin aut Xie, Guangwen verfasserin aut Qi, Peng verfasserin aut Liu, Xin verfasserin aut Zeng, Yan verfasserin aut Zhang, Dun verfasserin aut Wang, Peng verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 57, Seite 651-659 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:57 pages:651-659 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 57 651-659 |
spelling |
10.1016/j.ijhydene.2023.12.271 doi (DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bian, Haowei verfasserin aut Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering Wang, Chunyang verfasserin aut Zhao, Shen verfasserin aut Han, Guoqiang verfasserin aut Xie, Guangwen verfasserin aut Qi, Peng verfasserin aut Liu, Xin verfasserin aut Zeng, Yan verfasserin aut Zhang, Dun verfasserin aut Wang, Peng verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 57, Seite 651-659 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:57 pages:651-659 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 57 651-659 |
allfields_unstemmed |
10.1016/j.ijhydene.2023.12.271 doi (DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bian, Haowei verfasserin aut Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering Wang, Chunyang verfasserin aut Zhao, Shen verfasserin aut Han, Guoqiang verfasserin aut Xie, Guangwen verfasserin aut Qi, Peng verfasserin aut Liu, Xin verfasserin aut Zeng, Yan verfasserin aut Zhang, Dun verfasserin aut Wang, Peng verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 57, Seite 651-659 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:57 pages:651-659 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 57 651-659 |
allfieldsGer |
10.1016/j.ijhydene.2023.12.271 doi (DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bian, Haowei verfasserin aut Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering Wang, Chunyang verfasserin aut Zhao, Shen verfasserin aut Han, Guoqiang verfasserin aut Xie, Guangwen verfasserin aut Qi, Peng verfasserin aut Liu, Xin verfasserin aut Zeng, Yan verfasserin aut Zhang, Dun verfasserin aut Wang, Peng verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 57, Seite 651-659 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:57 pages:651-659 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 57 651-659 |
allfieldsSound |
10.1016/j.ijhydene.2023.12.271 doi (DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bian, Haowei verfasserin aut Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering Wang, Chunyang verfasserin aut Zhao, Shen verfasserin aut Han, Guoqiang verfasserin aut Xie, Guangwen verfasserin aut Qi, Peng verfasserin aut Liu, Xin verfasserin aut Zeng, Yan verfasserin aut Zhang, Dun verfasserin aut Wang, Peng verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 57, Seite 651-659 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:57 pages:651-659 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 57 651-659 |
language |
English |
source |
Enthalten in International journal of hydrogen energy 57, Seite 651-659 volume:57 pages:651-659 |
sourceStr |
Enthalten in International journal of hydrogen energy 57, Seite 651-659 volume:57 pages:651-659 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
International journal of hydrogen energy |
authorswithroles_txt_mv |
Bian, Haowei @@aut@@ Wang, Chunyang @@aut@@ Zhao, Shen @@aut@@ Han, Guoqiang @@aut@@ Xie, Guangwen @@aut@@ Qi, Peng @@aut@@ Liu, Xin @@aut@@ Zeng, Yan @@aut@@ Zhang, Dun @@aut@@ Wang, Peng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
301511357 |
dewey-sort |
3660 |
id |
ELV067143008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067143008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222093122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.12.271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067143008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)06571-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bian, Haowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High entropy alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OER</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodeposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synergistic effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Guoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Guangwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">57, Seite 651-659</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">pages:651-659</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="h">651-659</subfield></datafield></record></collection>
|
author |
Bian, Haowei |
spellingShingle |
Bian, Haowei ddc 660 bkl 52.56 misc High entropy alloy misc OER misc Electrodeposition misc Synergistic effect misc Corrosion engineering Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
authorStr |
Bian, Haowei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511357 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3487 |
topic_title |
660 620 VZ 52.56 bkl Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis High entropy alloy OER Electrodeposition Synergistic effect Corrosion engineering |
topic |
ddc 660 bkl 52.56 misc High entropy alloy misc OER misc Electrodeposition misc Synergistic effect misc Corrosion engineering |
topic_unstemmed |
ddc 660 bkl 52.56 misc High entropy alloy misc OER misc Electrodeposition misc Synergistic effect misc Corrosion engineering |
topic_browse |
ddc 660 bkl 52.56 misc High entropy alloy misc OER misc Electrodeposition misc Synergistic effect misc Corrosion engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of hydrogen energy |
hierarchy_parent_id |
301511357 |
dewey-tens |
660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
International journal of hydrogen energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 |
title |
Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
ctrlnum |
(DE-627)ELV067143008 (ELSEVIER)S0360-3199(23)06571-0 |
title_full |
Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
author_sort |
Bian, Haowei |
journal |
International journal of hydrogen energy |
journalStr |
International journal of hydrogen energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
651 |
author_browse |
Bian, Haowei Wang, Chunyang Zhao, Shen Han, Guoqiang Xie, Guangwen Qi, Peng Liu, Xin Zeng, Yan Zhang, Dun Wang, Peng |
container_volume |
57 |
class |
660 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bian, Haowei |
doi_str_mv |
10.1016/j.ijhydene.2023.12.271 |
dewey-full |
660 620 |
author2-role |
verfasserin |
title_sort |
preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for oer electrocatalysis |
title_auth |
Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
abstract |
High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. |
abstractGer |
High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. |
abstract_unstemmed |
High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis |
remote_bool |
true |
author2 |
Wang, Chunyang Zhao, Shen Han, Guoqiang Xie, Guangwen Qi, Peng Liu, Xin Zeng, Yan Zhang, Dun Wang, Peng |
author2Str |
Wang, Chunyang Zhao, Shen Han, Guoqiang Xie, Guangwen Qi, Peng Liu, Xin Zeng, Yan Zhang, Dun Wang, Peng |
ppnlink |
301511357 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijhydene.2023.12.271 |
up_date |
2024-07-06T20:14:54.314Z |
_version_ |
1803862036255342592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067143008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222093122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.12.271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067143008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)06571-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bian, Haowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High entropy alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OER</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodeposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synergistic effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Guoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Guangwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">57, Seite 651-659</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">pages:651-659</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="h">651-659</subfield></datafield></record></collection>
|
score |
7.3999977 |