Influence of models approximating the fractional-order differential equations on the calculation accuracy
In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless...
Ausführliche Beschreibung
Autor*in: |
Marciniak, Karol [verfasserIn] Saleem, Faisal [verfasserIn] Wiora, Józef [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: No title available - 131 |
---|---|
Übergeordnetes Werk: |
volume:131 |
DOI / URN: |
10.1016/j.cnsns.2023.107807 |
---|
Katalog-ID: |
ELV067147267 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067147267 | ||
003 | DE-627 | ||
005 | 20240222093142.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240222s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cnsns.2023.107807 |2 doi | |
035 | |a (DE-627)ELV067147267 | ||
035 | |a (ELSEVIER)S1007-5704(23)00728-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Marciniak, Karol |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of models approximating the fractional-order differential equations on the calculation accuracy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. | ||
650 | 4 | |a Modeling errors | |
650 | 4 | |a Oustaloup filter | |
650 | 4 | |a Matsuda approximation | |
650 | 4 | |a Carlson approximation | |
650 | 4 | |a Continued fraction expansion approximation | |
650 | 4 | |a Modified Stability Boundary Locus approximation | |
700 | 1 | |a Saleem, Faisal |e verfasserin |0 (orcid)0000-0003-2056-3196 |4 aut | |
700 | 1 | |a Wiora, Józef |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t No title available |g 131 |w (DE-627)352827580 |x 1007-5704 |7 nnns |
773 | 1 | 8 | |g volume:131 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 131 |
author_variant |
k m km f s fs j w jw |
---|---|
matchkey_str |
article:10075704:2023----::nlecomdlapoiaighfatoaodrifrnilqain |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.cnsns.2023.107807 doi (DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 DE-627 ger DE-627 rda eng Marciniak, Karol verfasserin aut Influence of models approximating the fractional-order differential equations on the calculation accuracy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation Saleem, Faisal verfasserin (orcid)0000-0003-2056-3196 aut Wiora, Józef verfasserin aut Enthalten in No title available 131 (DE-627)352827580 1007-5704 nnns volume:131 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 131 |
spelling |
10.1016/j.cnsns.2023.107807 doi (DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 DE-627 ger DE-627 rda eng Marciniak, Karol verfasserin aut Influence of models approximating the fractional-order differential equations on the calculation accuracy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation Saleem, Faisal verfasserin (orcid)0000-0003-2056-3196 aut Wiora, Józef verfasserin aut Enthalten in No title available 131 (DE-627)352827580 1007-5704 nnns volume:131 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 131 |
allfields_unstemmed |
10.1016/j.cnsns.2023.107807 doi (DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 DE-627 ger DE-627 rda eng Marciniak, Karol verfasserin aut Influence of models approximating the fractional-order differential equations on the calculation accuracy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation Saleem, Faisal verfasserin (orcid)0000-0003-2056-3196 aut Wiora, Józef verfasserin aut Enthalten in No title available 131 (DE-627)352827580 1007-5704 nnns volume:131 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 131 |
allfieldsGer |
10.1016/j.cnsns.2023.107807 doi (DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 DE-627 ger DE-627 rda eng Marciniak, Karol verfasserin aut Influence of models approximating the fractional-order differential equations on the calculation accuracy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation Saleem, Faisal verfasserin (orcid)0000-0003-2056-3196 aut Wiora, Józef verfasserin aut Enthalten in No title available 131 (DE-627)352827580 1007-5704 nnns volume:131 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 131 |
allfieldsSound |
10.1016/j.cnsns.2023.107807 doi (DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 DE-627 ger DE-627 rda eng Marciniak, Karol verfasserin aut Influence of models approximating the fractional-order differential equations on the calculation accuracy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation Saleem, Faisal verfasserin (orcid)0000-0003-2056-3196 aut Wiora, Józef verfasserin aut Enthalten in No title available 131 (DE-627)352827580 1007-5704 nnns volume:131 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 131 |
language |
English |
source |
Enthalten in No title available 131 volume:131 |
sourceStr |
Enthalten in No title available 131 volume:131 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation |
isfreeaccess_bool |
false |
container_title |
No title available |
authorswithroles_txt_mv |
Marciniak, Karol @@aut@@ Saleem, Faisal @@aut@@ Wiora, Józef @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
352827580 |
id |
ELV067147267 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067147267</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222093142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2023.107807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067147267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(23)00728-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marciniak, Karol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of models approximating the fractional-order differential equations on the calculation accuracy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oustaloup filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matsuda approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carlson approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continued fraction expansion approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Stability Boundary Locus approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saleem, Faisal</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2056-3196</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiora, Józef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">131</subfield><subfield code="w">(DE-627)352827580</subfield><subfield code="x">1007-5704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield></datafield></record></collection>
|
author |
Marciniak, Karol |
spellingShingle |
Marciniak, Karol misc Modeling errors misc Oustaloup filter misc Matsuda approximation misc Carlson approximation misc Continued fraction expansion approximation misc Modified Stability Boundary Locus approximation Influence of models approximating the fractional-order differential equations on the calculation accuracy |
authorStr |
Marciniak, Karol |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)352827580 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1007-5704 |
topic_title |
Influence of models approximating the fractional-order differential equations on the calculation accuracy Modeling errors Oustaloup filter Matsuda approximation Carlson approximation Continued fraction expansion approximation Modified Stability Boundary Locus approximation |
topic |
misc Modeling errors misc Oustaloup filter misc Matsuda approximation misc Carlson approximation misc Continued fraction expansion approximation misc Modified Stability Boundary Locus approximation |
topic_unstemmed |
misc Modeling errors misc Oustaloup filter misc Matsuda approximation misc Carlson approximation misc Continued fraction expansion approximation misc Modified Stability Boundary Locus approximation |
topic_browse |
misc Modeling errors misc Oustaloup filter misc Matsuda approximation misc Carlson approximation misc Continued fraction expansion approximation misc Modified Stability Boundary Locus approximation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
No title available |
hierarchy_parent_id |
352827580 |
hierarchy_top_title |
No title available |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)352827580 |
title |
Influence of models approximating the fractional-order differential equations on the calculation accuracy |
ctrlnum |
(DE-627)ELV067147267 (ELSEVIER)S1007-5704(23)00728-1 |
title_full |
Influence of models approximating the fractional-order differential equations on the calculation accuracy |
author_sort |
Marciniak, Karol |
journal |
No title available |
journalStr |
No title available |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Marciniak, Karol Saleem, Faisal Wiora, Józef |
container_volume |
131 |
format_se |
Elektronische Aufsätze |
author-letter |
Marciniak, Karol |
doi_str_mv |
10.1016/j.cnsns.2023.107807 |
normlink |
(ORCID)0000-0003-2056-3196 |
normlink_prefix_str_mv |
(orcid)0000-0003-2056-3196 |
author2-role |
verfasserin |
title_sort |
influence of models approximating the fractional-order differential equations on the calculation accuracy |
title_auth |
Influence of models approximating the fractional-order differential equations on the calculation accuracy |
abstract |
In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. |
abstractGer |
In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. |
abstract_unstemmed |
In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Influence of models approximating the fractional-order differential equations on the calculation accuracy |
remote_bool |
true |
author2 |
Saleem, Faisal Wiora, Józef |
author2Str |
Saleem, Faisal Wiora, Józef |
ppnlink |
352827580 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cnsns.2023.107807 |
up_date |
2024-07-06T20:15:47.960Z |
_version_ |
1803862092505153536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067147267</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222093142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2023.107807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067147267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(23)00728-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marciniak, Karol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of models approximating the fractional-order differential equations on the calculation accuracy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the usage of fractional-order (FO) differential equations to describe objects and physical phenomena has gained immense popularity. Due to the high computational complexity in the exact calculation of these equations, approximation models make the calculations executable. Regardless of their complexity, these models always introduce some inaccuracy which depends on the model type and its order. This article shows how the selected model affects the obtained solution. This study revisits seven fractional approximation models, known as the Continued Fraction Expansion method, the Matsuda method, the Carlson method, a modified version of the Stability Boundary Locus fitting method, and Basic, Refined, and Xue Oustaloup filters. First, this work calculates the steady-state values for each of the models symbolically. In the next step, it calculates the unit step responses. Then, it shows how the model selection affects Nyquist plots and compares the results with the plot determined directly. In the last stage, it estimates the trajectories for an example of an FO control system by each model. We conclude that when employing approximation models for fractional integro-differentiation, choosing the appropriate type of model, its parameters, and order is very important. Selecting the wrong model type or wrong order may lead to incorrect conclusions when describing a real phenomenon or object.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oustaloup filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matsuda approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carlson approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continued fraction expansion approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Stability Boundary Locus approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saleem, Faisal</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2056-3196</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiora, Józef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">131</subfield><subfield code="w">(DE-627)352827580</subfield><subfield code="x">1007-5704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield></datafield></record></collection>
|
score |
7.4017773 |