Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract
Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic...
Ausführliche Beschreibung
Autor*in: |
Kundu, Monika [verfasserIn] Krishnan, Prameela [verfasserIn] Prasad, Shiv [verfasserIn] Chawla, Gautam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Food chemistry - New York, NY [u.a.] : Elsevier, 1976, 443 |
---|---|
Übergeordnetes Werk: |
volume:443 |
DOI / URN: |
10.1016/j.foodchem.2024.138520 |
---|
Katalog-ID: |
ELV067165931 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV067165931 | ||
003 | DE-627 | ||
005 | 20240224093234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240224s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.foodchem.2024.138520 |2 doi | |
035 | |a (DE-627)ELV067165931 | ||
035 | |a (ELSEVIER)S0308-8146(24)00168-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q VZ |
084 | |a 58.34 |2 bkl | ||
100 | 1 | |a Kundu, Monika |e verfasserin |4 aut | |
245 | 1 | 0 | |a Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
264 | 1 | |c 2024 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. | ||
650 | 4 | |a Green nanosensor | |
650 | 4 | |a Iron oxide nanoparticles | |
650 | 4 | |a Fruits and vegetables extract | |
650 | 4 | |a Colorimetric sensor | |
650 | 4 | |a Limit of detection | |
700 | 1 | |a Krishnan, Prameela |e verfasserin |4 aut | |
700 | 1 | |a Prasad, Shiv |e verfasserin |4 aut | |
700 | 1 | |a Chawla, Gautam |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Food chemistry |d New York, NY [u.a.] : Elsevier, 1976 |g 443 |h Online-Ressource |w (DE-627)300898509 |w (DE-600)1483647-6 |w (DE-576)098330225 |x 1873-7072 |7 nnns |
773 | 1 | 8 | |g volume:443 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.34 |j Lebensmitteltechnologie |q VZ |
951 | |a AR | ||
952 | |d 443 |
author_variant |
m k mk p k pk s p sp g c gc |
---|---|
matchkey_str |
article:18737072:2024----::rennsnofrrcsdtcinfomleyenris |
hierarchy_sort_str |
2024 |
bklnumber |
58.34 |
publishDate |
2024 |
allfields |
10.1016/j.foodchem.2024.138520 doi (DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 DE-627 ger DE-627 rda eng 540 660 VZ 58.34 bkl Kundu, Monika verfasserin aut Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection Krishnan, Prameela verfasserin aut Prasad, Shiv verfasserin aut Chawla, Gautam verfasserin aut Enthalten in Food chemistry New York, NY [u.a.] : Elsevier, 1976 443 Online-Ressource (DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 1873-7072 nnns volume:443 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.34 Lebensmitteltechnologie VZ AR 443 |
spelling |
10.1016/j.foodchem.2024.138520 doi (DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 DE-627 ger DE-627 rda eng 540 660 VZ 58.34 bkl Kundu, Monika verfasserin aut Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection Krishnan, Prameela verfasserin aut Prasad, Shiv verfasserin aut Chawla, Gautam verfasserin aut Enthalten in Food chemistry New York, NY [u.a.] : Elsevier, 1976 443 Online-Ressource (DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 1873-7072 nnns volume:443 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.34 Lebensmitteltechnologie VZ AR 443 |
allfields_unstemmed |
10.1016/j.foodchem.2024.138520 doi (DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 DE-627 ger DE-627 rda eng 540 660 VZ 58.34 bkl Kundu, Monika verfasserin aut Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection Krishnan, Prameela verfasserin aut Prasad, Shiv verfasserin aut Chawla, Gautam verfasserin aut Enthalten in Food chemistry New York, NY [u.a.] : Elsevier, 1976 443 Online-Ressource (DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 1873-7072 nnns volume:443 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.34 Lebensmitteltechnologie VZ AR 443 |
allfieldsGer |
10.1016/j.foodchem.2024.138520 doi (DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 DE-627 ger DE-627 rda eng 540 660 VZ 58.34 bkl Kundu, Monika verfasserin aut Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection Krishnan, Prameela verfasserin aut Prasad, Shiv verfasserin aut Chawla, Gautam verfasserin aut Enthalten in Food chemistry New York, NY [u.a.] : Elsevier, 1976 443 Online-Ressource (DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 1873-7072 nnns volume:443 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.34 Lebensmitteltechnologie VZ AR 443 |
allfieldsSound |
10.1016/j.foodchem.2024.138520 doi (DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 DE-627 ger DE-627 rda eng 540 660 VZ 58.34 bkl Kundu, Monika verfasserin aut Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract 2024 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection Krishnan, Prameela verfasserin aut Prasad, Shiv verfasserin aut Chawla, Gautam verfasserin aut Enthalten in Food chemistry New York, NY [u.a.] : Elsevier, 1976 443 Online-Ressource (DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 1873-7072 nnns volume:443 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.34 Lebensmitteltechnologie VZ AR 443 |
language |
English |
source |
Enthalten in Food chemistry 443 volume:443 |
sourceStr |
Enthalten in Food chemistry 443 volume:443 |
format_phy_str_mv |
Article |
bklname |
Lebensmitteltechnologie |
institution |
findex.gbv.de |
topic_facet |
Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Food chemistry |
authorswithroles_txt_mv |
Kundu, Monika @@aut@@ Krishnan, Prameela @@aut@@ Prasad, Shiv @@aut@@ Chawla, Gautam @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
300898509 |
dewey-sort |
3540 |
id |
ELV067165931 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067165931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240224093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240224s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.foodchem.2024.138520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067165931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0308-8146(24)00168-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kundu, Monika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green nanosensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron oxide nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fruits and vegetables extract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorimetric sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit of detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krishnan, Prameela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Shiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chawla, Gautam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Food chemistry</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">443</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898509</subfield><subfield code="w">(DE-600)1483647-6</subfield><subfield code="w">(DE-576)098330225</subfield><subfield code="x">1873-7072</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:443</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">443</subfield></datafield></record></collection>
|
author |
Kundu, Monika |
spellingShingle |
Kundu, Monika ddc 540 bkl 58.34 misc Green nanosensor misc Iron oxide nanoparticles misc Fruits and vegetables extract misc Colorimetric sensor misc Limit of detection Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
authorStr |
Kundu, Monika |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300898509 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-7072 |
topic_title |
540 660 VZ 58.34 bkl Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract Green nanosensor Iron oxide nanoparticles Fruits and vegetables extract Colorimetric sensor Limit of detection |
topic |
ddc 540 bkl 58.34 misc Green nanosensor misc Iron oxide nanoparticles misc Fruits and vegetables extract misc Colorimetric sensor misc Limit of detection |
topic_unstemmed |
ddc 540 bkl 58.34 misc Green nanosensor misc Iron oxide nanoparticles misc Fruits and vegetables extract misc Colorimetric sensor misc Limit of detection |
topic_browse |
ddc 540 bkl 58.34 misc Green nanosensor misc Iron oxide nanoparticles misc Fruits and vegetables extract misc Colorimetric sensor misc Limit of detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Food chemistry |
hierarchy_parent_id |
300898509 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Food chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300898509 (DE-600)1483647-6 (DE-576)098330225 |
title |
Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
ctrlnum |
(DE-627)ELV067165931 (ELSEVIER)S0308-8146(24)00168-7 |
title_full |
Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
author_sort |
Kundu, Monika |
journal |
Food chemistry |
journalStr |
Food chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
zzz |
author_browse |
Kundu, Monika Krishnan, Prameela Prasad, Shiv Chawla, Gautam |
container_volume |
443 |
class |
540 660 VZ 58.34 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kundu, Monika |
doi_str_mv |
10.1016/j.foodchem.2024.138520 |
dewey-full |
540 660 |
author2-role |
verfasserin |
title_sort |
green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
title_auth |
Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
abstract |
Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. |
abstractGer |
Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. |
abstract_unstemmed |
Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract |
remote_bool |
true |
author2 |
Krishnan, Prameela Prasad, Shiv Chawla, Gautam |
author2Str |
Krishnan, Prameela Prasad, Shiv Chawla, Gautam |
ppnlink |
300898509 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.foodchem.2024.138520 |
up_date |
2024-07-06T20:19:48.499Z |
_version_ |
1803862344728576000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV067165931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240224093234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240224s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.foodchem.2024.138520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV067165931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0308-8146(24)00168-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kundu, Monika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green nanosensor for precise detection of formaldehyde in fruits and vegetables extract</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg−1 Lcm−2) in linearity range 0.03–0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green nanosensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron oxide nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fruits and vegetables extract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorimetric sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit of detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krishnan, Prameela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Shiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chawla, Gautam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Food chemistry</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">443</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898509</subfield><subfield code="w">(DE-600)1483647-6</subfield><subfield code="w">(DE-576)098330225</subfield><subfield code="x">1873-7072</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:443</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">443</subfield></datafield></record></collection>
|
score |
7.4019136 |