The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges
The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1988 |
---|
Reproduktion: |
Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 |
---|---|
Übergeordnetes Werk: |
in: Computers and Chemistry - Amsterdam : Elsevier, 12(1988), 3, Seite 219-227 |
Übergeordnetes Werk: |
volume:12 ; year:1988 ; number:3 ; pages:219-227 |
Links: |
---|
Katalog-ID: |
NLEJ174738099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ174738099 | ||
003 | DE-627 | ||
005 | 20230506003612.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070505s1988 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ174738099 | ||
035 | |a (DE-599)GBVNLZ174738099 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 4 | |a The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
264 | 1 | |c 1988 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. | ||
533 | |f Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 | ||
700 | 1 | |a Senn, P. |4 oth | |
773 | 0 | 8 | |i in |t Computers and Chemistry |d Amsterdam : Elsevier |g 12(1988), 3, Seite 219-227 |w (DE-627)NLEJ174733593 |w (DE-600)1497012-0 |x 0097-8485 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:1988 |g number:3 |g pages:219-227 |
856 | 4 | 0 | |u http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 |
912 | |a GBV_USEFLAG_H | ||
912 | |a ZDB-1-SDJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 12 |j 1988 |e 3 |h 219-227 |
matchkey_str |
article:00978485:1988----::hcmuainfhdsacmtiadhweeidxogahoabtayopeiy |
---|---|
hierarchy_sort_str |
1988 |
publishDate |
1988 |
allfields |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 DE-627 ger DE-627 rakwb eng The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges 1988 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Senn, P. oth in Computers and Chemistry Amsterdam : Elsevier 12(1988), 3, Seite 219-227 (DE-627)NLEJ174733593 (DE-600)1497012-0 0097-8485 nnns volume:12 year:1988 number:3 pages:219-227 http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 12 1988 3 219-227 |
spelling |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 DE-627 ger DE-627 rakwb eng The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges 1988 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Senn, P. oth in Computers and Chemistry Amsterdam : Elsevier 12(1988), 3, Seite 219-227 (DE-627)NLEJ174733593 (DE-600)1497012-0 0097-8485 nnns volume:12 year:1988 number:3 pages:219-227 http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 12 1988 3 219-227 |
allfields_unstemmed |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 DE-627 ger DE-627 rakwb eng The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges 1988 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Senn, P. oth in Computers and Chemistry Amsterdam : Elsevier 12(1988), 3, Seite 219-227 (DE-627)NLEJ174733593 (DE-600)1497012-0 0097-8485 nnns volume:12 year:1988 number:3 pages:219-227 http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 12 1988 3 219-227 |
allfieldsGer |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 DE-627 ger DE-627 rakwb eng The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges 1988 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Senn, P. oth in Computers and Chemistry Amsterdam : Elsevier 12(1988), 3, Seite 219-227 (DE-627)NLEJ174733593 (DE-600)1497012-0 0097-8485 nnns volume:12 year:1988 number:3 pages:219-227 http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 12 1988 3 219-227 |
allfieldsSound |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 DE-627 ger DE-627 rakwb eng The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges 1988 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Senn, P. oth in Computers and Chemistry Amsterdam : Elsevier 12(1988), 3, Seite 219-227 (DE-627)NLEJ174733593 (DE-600)1497012-0 0097-8485 nnns volume:12 year:1988 number:3 pages:219-227 http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 12 1988 3 219-227 |
language |
English |
source |
in Computers and Chemistry 12(1988), 3, Seite 219-227 volume:12 year:1988 number:3 pages:219-227 |
sourceStr |
in Computers and Chemistry 12(1988), 3, Seite 219-227 volume:12 year:1988 number:3 pages:219-227 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Computers and Chemistry |
authorswithroles_txt_mv |
Senn, P. @@oth@@ |
publishDateDaySort_date |
1988-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ174733593 |
id |
NLEJ174738099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ174738099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506003612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070505s1988 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ174738099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLZ174738099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1988</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Elsevier Journal Backfiles on ScienceDirect 1907 - 2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Senn, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Computers and Chemistry</subfield><subfield code="d">Amsterdam : Elsevier</subfield><subfield code="g">12(1988), 3, Seite 219-227</subfield><subfield code="w">(DE-627)NLEJ174733593</subfield><subfield code="w">(DE-600)1497012-0</subfield><subfield code="x">0097-8485</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1988</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:219-227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_H</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SDJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1988</subfield><subfield code="e">3</subfield><subfield code="h">219-227</subfield></datafield></record></collection>
|
series2 |
Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ174733593 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0097-8485 |
topic_title |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p s ps |
hierarchy_parent_title |
Computers and Chemistry |
hierarchy_parent_id |
NLEJ174733593 |
hierarchy_top_title |
Computers and Chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ174733593 (DE-600)1497012-0 |
title |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
spellingShingle |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
ctrlnum |
(DE-627)NLEJ174738099 (DE-599)GBVNLZ174738099 |
title_full |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
journal |
Computers and Chemistry |
journalStr |
Computers and Chemistry |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1988 |
contenttype_str_mv |
zzz |
container_start_page |
219 |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
title_sort |
computation of the distance matrix and the wiener index for graphs of arbitrary complexity with weighted vertices and edges |
title_auth |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
abstract |
The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. |
abstractGer |
The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. |
abstract_unstemmed |
The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed. |
collection_details |
GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE |
container_issue |
3 |
title_short |
The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges |
url |
http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4 |
remote_bool |
true |
author2 |
Senn, P. |
author2Str |
Senn, P. |
ppnlink |
NLEJ174733593 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T01:57:20.572Z |
_version_ |
1803792983598825472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ174738099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506003612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070505s1988 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ174738099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLZ174738099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1988</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The distance matrix of a molecule contains the number of chemical bonds traversed on the shortest paths along chemical bonds in the molecule for each pair of atoms which can be formed among the atoms in the molecule. An algorithm for the computation of the distance matrix of molecular structures of arbitrary complexity is presented for the general case in which the chemical bonds differ in their ''lengths''.The so-called topological indices are widely used in searches for empirical structure-property and/or structure-activity relationships. Several of the topological indices currently in use can be computed from the distance matrix, although for special types of molecular structures more efficient recursive procedures have been developed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Elsevier Journal Backfiles on ScienceDirect 1907 - 2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Senn, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Computers and Chemistry</subfield><subfield code="d">Amsterdam : Elsevier</subfield><subfield code="g">12(1988), 3, Seite 219-227</subfield><subfield code="w">(DE-627)NLEJ174733593</subfield><subfield code="w">(DE-600)1497012-0</subfield><subfield code="x">0097-8485</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1988</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:219-227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://linkinghub.elsevier.com/retrieve/pii/0097-8485(88)85020-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_H</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SDJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1988</subfield><subfield code="e">3</subfield><subfield code="h">219-227</subfield></datafield></record></collection>
|
score |
7.402237 |