Primary vertex finding in proton-antiproton events with a neural network simulation
In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with t...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1991 |
---|
Reproduktion: |
Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 |
---|---|
Übergeordnetes Werk: |
in: Nuclear Instruments and Methods in Physics Research Section A: - Amsterdam : Elsevier, 302(1991), 2, Seite 217-226 |
Übergeordnetes Werk: |
volume:302 ; year:1991 ; number:2 ; pages:217-226 |
Links: |
---|
Katalog-ID: |
NLEJ180941224 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ180941224 | ||
003 | DE-627 | ||
005 | 20210706141244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070505s1991 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ180941224 | ||
035 | |a (DE-599)GBVNLZ180941224 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Primary vertex finding in proton-antiproton events with a neural network simulation |
264 | 1 | |c 1991 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. | ||
533 | |f Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 | ||
700 | 1 | |a Lindsey, C.S. |4 oth | |
700 | 1 | |a Denby, B. |4 oth | |
773 | 0 | 8 | |i in |t Nuclear Instruments and Methods in Physics Research Section A: |d Amsterdam : Elsevier |g 302(1991), 2, Seite 217-226 |w (DE-627)NLEJ180854372 |w (DE-600)1466532-3 |x 0168-9002 |7 nnns |
773 | 1 | 8 | |g volume:302 |g year:1991 |g number:2 |g pages:217-226 |
856 | 4 | 0 | |u http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F |
912 | |a GBV_USEFLAG_H | ||
912 | |a ZDB-1-SDJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 302 |j 1991 |e 2 |h 217-226 |
matchkey_str |
article:01689002:1991----::rmrvrefnignrtnnirtnvnsihnua |
---|---|
hierarchy_sort_str |
1991 |
publishDate |
1991 |
allfields |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 DE-627 ger DE-627 rakwb eng Primary vertex finding in proton-antiproton events with a neural network simulation 1991 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Lindsey, C.S. oth Denby, B. oth in Nuclear Instruments and Methods in Physics Research Section A: Amsterdam : Elsevier 302(1991), 2, Seite 217-226 (DE-627)NLEJ180854372 (DE-600)1466532-3 0168-9002 nnns volume:302 year:1991 number:2 pages:217-226 http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 302 1991 2 217-226 |
spelling |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 DE-627 ger DE-627 rakwb eng Primary vertex finding in proton-antiproton events with a neural network simulation 1991 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Lindsey, C.S. oth Denby, B. oth in Nuclear Instruments and Methods in Physics Research Section A: Amsterdam : Elsevier 302(1991), 2, Seite 217-226 (DE-627)NLEJ180854372 (DE-600)1466532-3 0168-9002 nnns volume:302 year:1991 number:2 pages:217-226 http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 302 1991 2 217-226 |
allfields_unstemmed |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 DE-627 ger DE-627 rakwb eng Primary vertex finding in proton-antiproton events with a neural network simulation 1991 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Lindsey, C.S. oth Denby, B. oth in Nuclear Instruments and Methods in Physics Research Section A: Amsterdam : Elsevier 302(1991), 2, Seite 217-226 (DE-627)NLEJ180854372 (DE-600)1466532-3 0168-9002 nnns volume:302 year:1991 number:2 pages:217-226 http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 302 1991 2 217-226 |
allfieldsGer |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 DE-627 ger DE-627 rakwb eng Primary vertex finding in proton-antiproton events with a neural network simulation 1991 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Lindsey, C.S. oth Denby, B. oth in Nuclear Instruments and Methods in Physics Research Section A: Amsterdam : Elsevier 302(1991), 2, Seite 217-226 (DE-627)NLEJ180854372 (DE-600)1466532-3 0168-9002 nnns volume:302 year:1991 number:2 pages:217-226 http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 302 1991 2 217-226 |
allfieldsSound |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 DE-627 ger DE-627 rakwb eng Primary vertex finding in proton-antiproton events with a neural network simulation 1991 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 Lindsey, C.S. oth Denby, B. oth in Nuclear Instruments and Methods in Physics Research Section A: Amsterdam : Elsevier 302(1991), 2, Seite 217-226 (DE-627)NLEJ180854372 (DE-600)1466532-3 0168-9002 nnns volume:302 year:1991 number:2 pages:217-226 http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE AR 302 1991 2 217-226 |
language |
English |
source |
in Nuclear Instruments and Methods in Physics Research Section A: 302(1991), 2, Seite 217-226 volume:302 year:1991 number:2 pages:217-226 |
sourceStr |
in Nuclear Instruments and Methods in Physics Research Section A: 302(1991), 2, Seite 217-226 volume:302 year:1991 number:2 pages:217-226 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Nuclear Instruments and Methods in Physics Research Section A: |
authorswithroles_txt_mv |
Lindsey, C.S. @@oth@@ Denby, B. @@oth@@ |
publishDateDaySort_date |
1991-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ180854372 |
id |
NLEJ180941224 |
language_de |
englisch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ180941224</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706141244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070505s1991 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ180941224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLZ180941224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primary vertex finding in proton-antiproton events with a neural network simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Elsevier Journal Backfiles on ScienceDirect 1907 - 2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lindsey, C.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Denby, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Nuclear Instruments and Methods in Physics Research Section A:</subfield><subfield code="d">Amsterdam : Elsevier</subfield><subfield code="g">302(1991), 2, Seite 217-226</subfield><subfield code="w">(DE-627)NLEJ180854372</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:302</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:217-226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_H</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SDJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">302</subfield><subfield code="j">1991</subfield><subfield code="e">2</subfield><subfield code="h">217-226</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ180941224</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706141244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070505s1991 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ180941224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLZ180941224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primary vertex finding in proton-antiproton events with a neural network simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Elsevier Journal Backfiles on ScienceDirect 1907 - 2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lindsey, C.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Denby, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Nuclear Instruments and Methods in Physics Research Section A:</subfield><subfield code="d">Amsterdam : Elsevier</subfield><subfield code="g">302(1991), 2, Seite 217-226</subfield><subfield code="w">(DE-627)NLEJ180854372</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:302</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:217-226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_H</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SDJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">302</subfield><subfield code="j">1991</subfield><subfield code="e">2</subfield><subfield code="h">217-226</subfield></datafield></record></collection>
|
series2 |
Elsevier Journal Backfiles on ScienceDirect 1907 - 2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ180854372 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0168-9002 |
topic_title |
Primary vertex finding in proton-antiproton events with a neural network simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c l cl b d bd |
hierarchy_parent_title |
Nuclear Instruments and Methods in Physics Research Section A: |
hierarchy_parent_id |
NLEJ180854372 |
hierarchy_top_title |
Nuclear Instruments and Methods in Physics Research Section A: |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ180854372 (DE-600)1466532-3 |
title |
Primary vertex finding in proton-antiproton events with a neural network simulation |
spellingShingle |
Primary vertex finding in proton-antiproton events with a neural network simulation |
ctrlnum |
(DE-627)NLEJ180941224 (DE-599)GBVNLZ180941224 |
title_full |
Primary vertex finding in proton-antiproton events with a neural network simulation |
journal |
Nuclear Instruments and Methods in Physics Research Section A: |
journalStr |
Nuclear Instruments and Methods in Physics Research Section A: |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1991 |
contenttype_str_mv |
zzz |
container_start_page |
217 |
container_volume |
302 |
format_se |
Elektronische Aufsätze |
title_sort |
primary vertex finding in proton-antiproton events with a neural network simulation |
title_auth |
Primary vertex finding in proton-antiproton events with a neural network simulation |
abstract |
In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. |
abstractGer |
In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. |
abstract_unstemmed |
In a test of neural networks in high energy physics pattern recognition problems, drift chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a neural network simulation to find the primary event vertex. A three layer, feed-forward neural network was trained with the back-propagation technique to give the beam line vertices of tracks traversing subsections of the chamber. Summing the outputs of all subsection networks then gives the primary vertex along the beam line. Results are compared to conventional methods. |
collection_details |
GBV_USEFLAG_H ZDB-1-SDJ GBV_NL_ARTICLE |
container_issue |
2 |
title_short |
Primary vertex finding in proton-antiproton events with a neural network simulation |
url |
http://linkinghub.elsevier.com/retrieve/pii/0168-9002(91)90405-F |
remote_bool |
true |
author2 |
Lindsey, C.S. Denby, B. |
author2Str |
Lindsey, C.S. Denby, B. |
ppnlink |
NLEJ180854372 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-06T05:00:18.637Z |
_version_ |
1803804494934310912 |
score |
7.4011765 |