The convergence of a new iteration process for the solution of nonlinear functional equations in banach space
Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tange...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1968 |
---|
Umfang: |
6 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Mathematical notes - 1967, 4(1968) vom: März, Seite 680-685 |
Übergeordnetes Werk: |
volume:4 ; year:1968 ; month:03 ; pages:680-685 ; extent:6 |
Links: |
---|
Katalog-ID: |
NLEJ191314765 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ191314765 | ||
003 | DE-627 | ||
005 | 20210707164220.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070526s1968 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ191314765 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
264 | 1 | |c 1968 | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Lika, D. K. |4 oth | |
773 | 0 | 8 | |i in |t Mathematical notes |d 1967 |g 4(1968) vom: März, Seite 680-685 |w (DE-627)NLEJ188983562 |w (DE-600)2037663-7 |x 1573-8876 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:1968 |g month:03 |g pages:680-685 |g extent:6 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01116447 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 4 |j 1968 |c 3 |h 680-685 |g 6 |
matchkey_str |
article:15738876:1968----::hcnegnefnwtrtopoesoteouinfolnafnto |
---|---|
hierarchy_sort_str |
1968 |
publishDate |
1968 |
allfields |
(DE-627)NLEJ191314765 DE-627 ger DE-627 rakwb eng The convergence of a new iteration process for the solution of nonlinear functional equations in banach space 1968 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. Springer Online Journal Archives 1860-2002 Lika, D. K. oth in Mathematical notes 1967 4(1968) vom: März, Seite 680-685 (DE-627)NLEJ188983562 (DE-600)2037663-7 1573-8876 nnns volume:4 year:1968 month:03 pages:680-685 extent:6 http://dx.doi.org/10.1007/BF01116447 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 4 1968 3 680-685 6 |
spelling |
(DE-627)NLEJ191314765 DE-627 ger DE-627 rakwb eng The convergence of a new iteration process for the solution of nonlinear functional equations in banach space 1968 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. Springer Online Journal Archives 1860-2002 Lika, D. K. oth in Mathematical notes 1967 4(1968) vom: März, Seite 680-685 (DE-627)NLEJ188983562 (DE-600)2037663-7 1573-8876 nnns volume:4 year:1968 month:03 pages:680-685 extent:6 http://dx.doi.org/10.1007/BF01116447 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 4 1968 3 680-685 6 |
allfields_unstemmed |
(DE-627)NLEJ191314765 DE-627 ger DE-627 rakwb eng The convergence of a new iteration process for the solution of nonlinear functional equations in banach space 1968 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. Springer Online Journal Archives 1860-2002 Lika, D. K. oth in Mathematical notes 1967 4(1968) vom: März, Seite 680-685 (DE-627)NLEJ188983562 (DE-600)2037663-7 1573-8876 nnns volume:4 year:1968 month:03 pages:680-685 extent:6 http://dx.doi.org/10.1007/BF01116447 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 4 1968 3 680-685 6 |
allfieldsGer |
(DE-627)NLEJ191314765 DE-627 ger DE-627 rakwb eng The convergence of a new iteration process for the solution of nonlinear functional equations in banach space 1968 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. Springer Online Journal Archives 1860-2002 Lika, D. K. oth in Mathematical notes 1967 4(1968) vom: März, Seite 680-685 (DE-627)NLEJ188983562 (DE-600)2037663-7 1573-8876 nnns volume:4 year:1968 month:03 pages:680-685 extent:6 http://dx.doi.org/10.1007/BF01116447 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 4 1968 3 680-685 6 |
allfieldsSound |
(DE-627)NLEJ191314765 DE-627 ger DE-627 rakwb eng The convergence of a new iteration process for the solution of nonlinear functional equations in banach space 1968 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. Springer Online Journal Archives 1860-2002 Lika, D. K. oth in Mathematical notes 1967 4(1968) vom: März, Seite 680-685 (DE-627)NLEJ188983562 (DE-600)2037663-7 1573-8876 nnns volume:4 year:1968 month:03 pages:680-685 extent:6 http://dx.doi.org/10.1007/BF01116447 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 4 1968 3 680-685 6 |
language |
English |
source |
in Mathematical notes 4(1968) vom: März, Seite 680-685 volume:4 year:1968 month:03 pages:680-685 extent:6 |
sourceStr |
in Mathematical notes 4(1968) vom: März, Seite 680-685 volume:4 year:1968 month:03 pages:680-685 extent:6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Mathematical notes |
authorswithroles_txt_mv |
Lika, D. K. @@oth@@ |
publishDateDaySort_date |
1968-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188983562 |
id |
NLEJ191314765 |
language_de |
englisch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ191314765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707164220.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1968 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ191314765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The convergence of a new iteration process for the solution of nonlinear functional equations in banach space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lika, D. K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Mathematical notes</subfield><subfield code="d">1967</subfield><subfield code="g">4(1968) vom: März, Seite 680-685</subfield><subfield code="w">(DE-627)NLEJ188983562</subfield><subfield code="w">(DE-600)2037663-7</subfield><subfield code="x">1573-8876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:1968</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:680-685</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01116447</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">1968</subfield><subfield code="c">3</subfield><subfield code="h">680-685</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ191314765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707164220.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1968 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ191314765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The convergence of a new iteration process for the solution of nonlinear functional equations in banach space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lika, D. K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Mathematical notes</subfield><subfield code="d">1967</subfield><subfield code="g">4(1968) vom: März, Seite 680-685</subfield><subfield code="w">(DE-627)NLEJ188983562</subfield><subfield code="w">(DE-600)2037663-7</subfield><subfield code="x">1573-8876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:1968</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:680-685</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01116447</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">1968</subfield><subfield code="c">3</subfield><subfield code="h">680-685</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188983562 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-8876 |
topic_title |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d k l dk dkl |
hierarchy_parent_title |
Mathematical notes |
hierarchy_parent_id |
NLEJ188983562 |
hierarchy_top_title |
Mathematical notes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188983562 (DE-600)2037663-7 |
title |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
spellingShingle |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
ctrlnum |
(DE-627)NLEJ191314765 |
title_full |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
journal |
Mathematical notes |
journalStr |
Mathematical notes |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1968 |
contenttype_str_mv |
zzz |
container_start_page |
680 |
container_volume |
4 |
physical |
6 |
format_se |
Elektronische Aufsätze |
title_sort |
the convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
title_auth |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
abstract |
Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. |
abstractGer |
Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. |
abstract_unstemmed |
Abstract A new iteration process is used to prove several theorems concerning the existence of solutions of the functional equation F(x)=0 where F(x) is a nonlinear functional in Banach space. An advantage of the process under consideration over analogous process using tangential parabolas and tangential hyperbolas, which have rates of convergence of the same order, is the fact that in it second-order Frechet derivatives do not have to be calculated. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
The convergence of a new iteration process for the solution of nonlinear functional equations in banach space |
url |
http://dx.doi.org/10.1007/BF01116447 |
remote_bool |
true |
author2 |
Lika, D. K. |
author2Str |
Lika, D. K. |
ppnlink |
NLEJ188983562 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T06:00:11.771Z |
_version_ |
1803808262608388096 |
score |
7.4006968 |