Soliton model of elementary electric charge
Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1990 |
---|
Umfang: |
9 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Theoretical and mathematical physics - 1969, 82(1990) vom: März, Seite 244-252 |
Übergeordnetes Werk: |
volume:82 ; year:1990 ; month:03 ; pages:244-252 ; extent:9 |
Links: |
---|
Katalog-ID: |
NLEJ192539647 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ192539647 | ||
003 | DE-627 | ||
005 | 20210707192243.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070526s1990 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ192539647 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Soliton model of elementary electric charge |
264 | 1 | |c 1990 | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Kobushkin, A. P. |4 oth | |
700 | 1 | |a Chepilko, N. M. |4 oth | |
773 | 0 | 8 | |i in |t Theoretical and mathematical physics |d 1969 |g 82(1990) vom: März, Seite 244-252 |w (DE-627)NLEJ188986782 |w (DE-600)2037569-4 |x 1573-9333 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:1990 |g month:03 |g pages:244-252 |g extent:9 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01029217 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 82 |j 1990 |c 3 |h 244-252 |g 9 |
matchkey_str |
article:15739333:1990----::oiomdlflmnayl |
---|---|
hierarchy_sort_str |
1990 |
publishDate |
1990 |
allfields |
(DE-627)NLEJ192539647 DE-627 ger DE-627 rakwb eng Soliton model of elementary electric charge 1990 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. Springer Online Journal Archives 1860-2002 Kobushkin, A. P. oth Chepilko, N. M. oth in Theoretical and mathematical physics 1969 82(1990) vom: März, Seite 244-252 (DE-627)NLEJ188986782 (DE-600)2037569-4 1573-9333 nnns volume:82 year:1990 month:03 pages:244-252 extent:9 http://dx.doi.org/10.1007/BF01029217 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 82 1990 3 244-252 9 |
spelling |
(DE-627)NLEJ192539647 DE-627 ger DE-627 rakwb eng Soliton model of elementary electric charge 1990 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. Springer Online Journal Archives 1860-2002 Kobushkin, A. P. oth Chepilko, N. M. oth in Theoretical and mathematical physics 1969 82(1990) vom: März, Seite 244-252 (DE-627)NLEJ188986782 (DE-600)2037569-4 1573-9333 nnns volume:82 year:1990 month:03 pages:244-252 extent:9 http://dx.doi.org/10.1007/BF01029217 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 82 1990 3 244-252 9 |
allfields_unstemmed |
(DE-627)NLEJ192539647 DE-627 ger DE-627 rakwb eng Soliton model of elementary electric charge 1990 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. Springer Online Journal Archives 1860-2002 Kobushkin, A. P. oth Chepilko, N. M. oth in Theoretical and mathematical physics 1969 82(1990) vom: März, Seite 244-252 (DE-627)NLEJ188986782 (DE-600)2037569-4 1573-9333 nnns volume:82 year:1990 month:03 pages:244-252 extent:9 http://dx.doi.org/10.1007/BF01029217 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 82 1990 3 244-252 9 |
allfieldsGer |
(DE-627)NLEJ192539647 DE-627 ger DE-627 rakwb eng Soliton model of elementary electric charge 1990 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. Springer Online Journal Archives 1860-2002 Kobushkin, A. P. oth Chepilko, N. M. oth in Theoretical and mathematical physics 1969 82(1990) vom: März, Seite 244-252 (DE-627)NLEJ188986782 (DE-600)2037569-4 1573-9333 nnns volume:82 year:1990 month:03 pages:244-252 extent:9 http://dx.doi.org/10.1007/BF01029217 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 82 1990 3 244-252 9 |
allfieldsSound |
(DE-627)NLEJ192539647 DE-627 ger DE-627 rakwb eng Soliton model of elementary electric charge 1990 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. Springer Online Journal Archives 1860-2002 Kobushkin, A. P. oth Chepilko, N. M. oth in Theoretical and mathematical physics 1969 82(1990) vom: März, Seite 244-252 (DE-627)NLEJ188986782 (DE-600)2037569-4 1573-9333 nnns volume:82 year:1990 month:03 pages:244-252 extent:9 http://dx.doi.org/10.1007/BF01029217 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 82 1990 3 244-252 9 |
language |
English |
source |
in Theoretical and mathematical physics 82(1990) vom: März, Seite 244-252 volume:82 year:1990 month:03 pages:244-252 extent:9 |
sourceStr |
in Theoretical and mathematical physics 82(1990) vom: März, Seite 244-252 volume:82 year:1990 month:03 pages:244-252 extent:9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Theoretical and mathematical physics |
authorswithroles_txt_mv |
Kobushkin, A. P. @@oth@@ Chepilko, N. M. @@oth@@ |
publishDateDaySort_date |
1990-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188986782 |
id |
NLEJ192539647 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ192539647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707192243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1990 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ192539647</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soliton model of elementary electric charge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kobushkin, A. P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chepilko, N. M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">1969</subfield><subfield code="g">82(1990) vom: März, Seite 244-252</subfield><subfield code="w">(DE-627)NLEJ188986782</subfield><subfield code="w">(DE-600)2037569-4</subfield><subfield code="x">1573-9333</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:1990</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:244-252</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01029217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">1990</subfield><subfield code="c">3</subfield><subfield code="h">244-252</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188986782 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-9333 |
topic_title |
Soliton model of elementary electric charge |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a p k ap apk n m c nm nmc |
hierarchy_parent_title |
Theoretical and mathematical physics |
hierarchy_parent_id |
NLEJ188986782 |
hierarchy_top_title |
Theoretical and mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188986782 (DE-600)2037569-4 |
title |
Soliton model of elementary electric charge |
spellingShingle |
Soliton model of elementary electric charge |
ctrlnum |
(DE-627)NLEJ192539647 |
title_full |
Soliton model of elementary electric charge |
journal |
Theoretical and mathematical physics |
journalStr |
Theoretical and mathematical physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1990 |
contenttype_str_mv |
zzz |
container_start_page |
244 |
container_volume |
82 |
physical |
9 |
format_se |
Elektronische Aufsätze |
title_sort |
soliton model of elementary electric charge |
title_auth |
Soliton model of elementary electric charge |
abstract |
Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. |
abstractGer |
Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. |
abstract_unstemmed |
Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Soliton model of elementary electric charge |
url |
http://dx.doi.org/10.1007/BF01029217 |
remote_bool |
true |
author2 |
Kobushkin, A. P. Chepilko, N. M. |
author2Str |
Kobushkin, A. P. Chepilko, N. M. |
ppnlink |
NLEJ188986782 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-06T08:48:26.578Z |
_version_ |
1803818847781781504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ192539647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707192243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1990 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ192539647</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soliton model of elementary electric charge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conclusions Thus, we have shown that in the electrodynamics of the Klein-Gordon field there exist two spectra of three-dimensional electrostatic soliton solutions. One of them is dynamically stable, the other topologically stable. For each of the spectra, the value of the electrostatic potential at the center of the soliton is quantized, while the value of the electric field vanishes. At the periphery of the solitons, the electrostatic potential corresponds to the Coulomb law. The topological charge of the soliton is related to quantization of the value of the electrostatic potential at infinity: $$\Phi _p (r) \simeq e/r + _{\varphi _p } $$ ,p=0, 1, 2, .... The topological soliton can obviously be regarded as a model of an elementary electric charge, an attractive feature of which is the absence of divergences of the integrals of the motion. For the dynamical solitons, we have ϕ p =0,p=0, 1, 2, .... A rotating electrostatic soliton can be regarded as a soliton model of an elementary electric charge possessing an intrinsic magnetic moment. The magnetic field at the center of the rotating soliton is quantized, while at its periphery the field has a magneticdipole nature.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kobushkin, A. P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chepilko, N. M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">1969</subfield><subfield code="g">82(1990) vom: März, Seite 244-252</subfield><subfield code="w">(DE-627)NLEJ188986782</subfield><subfield code="w">(DE-600)2037569-4</subfield><subfield code="x">1573-9333</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:1990</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:244-252</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01029217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">1990</subfield><subfield code="c">3</subfield><subfield code="h">244-252</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
score |
7.401531 |