Hamming chromatography
Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The co...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1996 |
---|
Umfang: |
6 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Molecular diversity - 1995, 1(1996) vom: März, Seite 187-192 |
Übergeordnetes Werk: |
volume:1 ; year:1996 ; month:03 ; pages:187-192 ; extent:6 |
Links: |
---|
Katalog-ID: |
NLEJ195174909 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ195174909 | ||
003 | DE-627 | ||
005 | 20210708003413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070526s1996 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ195174909 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Hamming chromatography |
264 | 1 | |c 1996 | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Schwienhorst, Andreas |4 oth | |
700 | 1 | |a Schober, Andreas |4 oth | |
700 | 1 | |a Günther, Rolf |4 oth | |
700 | 1 | |a Stadler, Peter F. |4 oth | |
773 | 0 | 8 | |i in |t Molecular diversity |d 1995 |g 1(1996) vom: März, Seite 187-192 |w (DE-627)NLEJ188989196 |w (DE-600)2003589-5 |x 1573-501X |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:1996 |g month:03 |g pages:187-192 |g extent:6 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01544957 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 1 |j 1996 |c 3 |h 187-192 |g 6 |
matchkey_str |
article:1573501X:1996----::amncrmt |
---|---|
hierarchy_sort_str |
1996 |
publishDate |
1996 |
allfields |
(DE-627)NLEJ195174909 DE-627 ger DE-627 rakwb eng Hamming chromatography 1996 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. Springer Online Journal Archives 1860-2002 Schwienhorst, Andreas oth Schober, Andreas oth Günther, Rolf oth Stadler, Peter F. oth in Molecular diversity 1995 1(1996) vom: März, Seite 187-192 (DE-627)NLEJ188989196 (DE-600)2003589-5 1573-501X nnns volume:1 year:1996 month:03 pages:187-192 extent:6 http://dx.doi.org/10.1007/BF01544957 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1996 3 187-192 6 |
spelling |
(DE-627)NLEJ195174909 DE-627 ger DE-627 rakwb eng Hamming chromatography 1996 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. Springer Online Journal Archives 1860-2002 Schwienhorst, Andreas oth Schober, Andreas oth Günther, Rolf oth Stadler, Peter F. oth in Molecular diversity 1995 1(1996) vom: März, Seite 187-192 (DE-627)NLEJ188989196 (DE-600)2003589-5 1573-501X nnns volume:1 year:1996 month:03 pages:187-192 extent:6 http://dx.doi.org/10.1007/BF01544957 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1996 3 187-192 6 |
allfields_unstemmed |
(DE-627)NLEJ195174909 DE-627 ger DE-627 rakwb eng Hamming chromatography 1996 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. Springer Online Journal Archives 1860-2002 Schwienhorst, Andreas oth Schober, Andreas oth Günther, Rolf oth Stadler, Peter F. oth in Molecular diversity 1995 1(1996) vom: März, Seite 187-192 (DE-627)NLEJ188989196 (DE-600)2003589-5 1573-501X nnns volume:1 year:1996 month:03 pages:187-192 extent:6 http://dx.doi.org/10.1007/BF01544957 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1996 3 187-192 6 |
allfieldsGer |
(DE-627)NLEJ195174909 DE-627 ger DE-627 rakwb eng Hamming chromatography 1996 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. Springer Online Journal Archives 1860-2002 Schwienhorst, Andreas oth Schober, Andreas oth Günther, Rolf oth Stadler, Peter F. oth in Molecular diversity 1995 1(1996) vom: März, Seite 187-192 (DE-627)NLEJ188989196 (DE-600)2003589-5 1573-501X nnns volume:1 year:1996 month:03 pages:187-192 extent:6 http://dx.doi.org/10.1007/BF01544957 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1996 3 187-192 6 |
allfieldsSound |
(DE-627)NLEJ195174909 DE-627 ger DE-627 rakwb eng Hamming chromatography 1996 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. Springer Online Journal Archives 1860-2002 Schwienhorst, Andreas oth Schober, Andreas oth Günther, Rolf oth Stadler, Peter F. oth in Molecular diversity 1995 1(1996) vom: März, Seite 187-192 (DE-627)NLEJ188989196 (DE-600)2003589-5 1573-501X nnns volume:1 year:1996 month:03 pages:187-192 extent:6 http://dx.doi.org/10.1007/BF01544957 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1996 3 187-192 6 |
language |
English |
source |
in Molecular diversity 1(1996) vom: März, Seite 187-192 volume:1 year:1996 month:03 pages:187-192 extent:6 |
sourceStr |
in Molecular diversity 1(1996) vom: März, Seite 187-192 volume:1 year:1996 month:03 pages:187-192 extent:6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Molecular diversity |
authorswithroles_txt_mv |
Schwienhorst, Andreas @@oth@@ Schober, Andreas @@oth@@ Günther, Rolf @@oth@@ Stadler, Peter F. @@oth@@ |
publishDateDaySort_date |
1996-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188989196 |
id |
NLEJ195174909 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ195174909</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210708003413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1996 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ195174909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamming chromatography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwienhorst, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schober, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Günther, Rolf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Peter F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Molecular diversity</subfield><subfield code="d">1995</subfield><subfield code="g">1(1996) vom: März, Seite 187-192</subfield><subfield code="w">(DE-627)NLEJ188989196</subfield><subfield code="w">(DE-600)2003589-5</subfield><subfield code="x">1573-501X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1996</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:187-192</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01544957</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1996</subfield><subfield code="c">3</subfield><subfield code="h">187-192</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188989196 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-501X |
topic_title |
Hamming chromatography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a s as a s as r g rg p f s pf pfs |
hierarchy_parent_title |
Molecular diversity |
hierarchy_parent_id |
NLEJ188989196 |
hierarchy_top_title |
Molecular diversity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188989196 (DE-600)2003589-5 |
title |
Hamming chromatography |
spellingShingle |
Hamming chromatography |
ctrlnum |
(DE-627)NLEJ195174909 |
title_full |
Hamming chromatography |
journal |
Molecular diversity |
journalStr |
Molecular diversity |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1996 |
contenttype_str_mv |
zzz |
container_start_page |
187 |
container_volume |
1 |
physical |
6 |
format_se |
Elektronische Aufsätze |
title_sort |
hamming chromatography |
title_auth |
Hamming chromatography |
abstract |
Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. |
abstractGer |
Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. |
abstract_unstemmed |
Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Hamming chromatography |
url |
http://dx.doi.org/10.1007/BF01544957 |
remote_bool |
true |
author2 |
Schwienhorst, Andreas Schober, Andreas Günther, Rolf Stadler, Peter F. |
author2Str |
Schwienhorst, Andreas Schober, Andreas Günther, Rolf Stadler, Peter F. |
ppnlink |
NLEJ188989196 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
up_date |
2024-07-06T02:56:19.410Z |
_version_ |
1803796694338371584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ195174909</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210708003413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1996 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ195174909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamming chromatography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an ‘effective temperature gradient’ using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwienhorst, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schober, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Günther, Rolf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Peter F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Molecular diversity</subfield><subfield code="d">1995</subfield><subfield code="g">1(1996) vom: März, Seite 187-192</subfield><subfield code="w">(DE-627)NLEJ188989196</subfield><subfield code="w">(DE-600)2003589-5</subfield><subfield code="x">1573-501X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1996</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:187-192</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01544957</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1996</subfield><subfield code="c">3</subfield><subfield code="h">187-192</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.399419 |