Holes photogeneration in phthalocyanine-doped polysilane
Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yi...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1991 |
---|
Umfang: |
10 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Molecular engineering - 1991, 1(1991) vom: März, Seite 221-230 |
Übergeordnetes Werk: |
volume:1 ; year:1991 ; month:03 ; pages:221-230 ; extent:10 |
Links: |
---|
Katalog-ID: |
NLEJ195190866 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ195190866 | ||
003 | DE-627 | ||
005 | 20210708003609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070526s1991 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ195190866 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Holes photogeneration in phthalocyanine-doped polysilane |
264 | 1 | |c 1991 | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Lagarde, M. |4 oth | |
700 | 1 | |a Moisan, J. Y. |4 oth | |
700 | 1 | |a Dubois, J. C. |4 oth | |
773 | 0 | 8 | |i in |t Molecular engineering |d 1991 |g 1(1991) vom: März, Seite 221-230 |w (DE-627)NLEJ188990151 |w (DE-600)2003655-3 |x 1572-8951 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:1991 |g month:03 |g pages:221-230 |g extent:10 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF00161665 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 1 |j 1991 |c 3 |h 221-230 |g 10 |
matchkey_str |
article:15728951:1991----::oepooeeainnhhlcaie |
---|---|
hierarchy_sort_str |
1991 |
publishDate |
1991 |
allfields |
(DE-627)NLEJ195190866 DE-627 ger DE-627 rakwb eng Holes photogeneration in phthalocyanine-doped polysilane 1991 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. Springer Online Journal Archives 1860-2002 Lagarde, M. oth Moisan, J. Y. oth Dubois, J. C. oth in Molecular engineering 1991 1(1991) vom: März, Seite 221-230 (DE-627)NLEJ188990151 (DE-600)2003655-3 1572-8951 nnns volume:1 year:1991 month:03 pages:221-230 extent:10 http://dx.doi.org/10.1007/BF00161665 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1991 3 221-230 10 |
spelling |
(DE-627)NLEJ195190866 DE-627 ger DE-627 rakwb eng Holes photogeneration in phthalocyanine-doped polysilane 1991 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. Springer Online Journal Archives 1860-2002 Lagarde, M. oth Moisan, J. Y. oth Dubois, J. C. oth in Molecular engineering 1991 1(1991) vom: März, Seite 221-230 (DE-627)NLEJ188990151 (DE-600)2003655-3 1572-8951 nnns volume:1 year:1991 month:03 pages:221-230 extent:10 http://dx.doi.org/10.1007/BF00161665 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1991 3 221-230 10 |
allfields_unstemmed |
(DE-627)NLEJ195190866 DE-627 ger DE-627 rakwb eng Holes photogeneration in phthalocyanine-doped polysilane 1991 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. Springer Online Journal Archives 1860-2002 Lagarde, M. oth Moisan, J. Y. oth Dubois, J. C. oth in Molecular engineering 1991 1(1991) vom: März, Seite 221-230 (DE-627)NLEJ188990151 (DE-600)2003655-3 1572-8951 nnns volume:1 year:1991 month:03 pages:221-230 extent:10 http://dx.doi.org/10.1007/BF00161665 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1991 3 221-230 10 |
allfieldsGer |
(DE-627)NLEJ195190866 DE-627 ger DE-627 rakwb eng Holes photogeneration in phthalocyanine-doped polysilane 1991 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. Springer Online Journal Archives 1860-2002 Lagarde, M. oth Moisan, J. Y. oth Dubois, J. C. oth in Molecular engineering 1991 1(1991) vom: März, Seite 221-230 (DE-627)NLEJ188990151 (DE-600)2003655-3 1572-8951 nnns volume:1 year:1991 month:03 pages:221-230 extent:10 http://dx.doi.org/10.1007/BF00161665 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1991 3 221-230 10 |
allfieldsSound |
(DE-627)NLEJ195190866 DE-627 ger DE-627 rakwb eng Holes photogeneration in phthalocyanine-doped polysilane 1991 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. Springer Online Journal Archives 1860-2002 Lagarde, M. oth Moisan, J. Y. oth Dubois, J. C. oth in Molecular engineering 1991 1(1991) vom: März, Seite 221-230 (DE-627)NLEJ188990151 (DE-600)2003655-3 1572-8951 nnns volume:1 year:1991 month:03 pages:221-230 extent:10 http://dx.doi.org/10.1007/BF00161665 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 1 1991 3 221-230 10 |
language |
English |
source |
in Molecular engineering 1(1991) vom: März, Seite 221-230 volume:1 year:1991 month:03 pages:221-230 extent:10 |
sourceStr |
in Molecular engineering 1(1991) vom: März, Seite 221-230 volume:1 year:1991 month:03 pages:221-230 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Molecular engineering |
authorswithroles_txt_mv |
Lagarde, M. @@oth@@ Moisan, J. Y. @@oth@@ Dubois, J. C. @@oth@@ |
publishDateDaySort_date |
1991-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188990151 |
id |
NLEJ195190866 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ195190866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210708003609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1991 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ195190866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holes photogeneration in phthalocyanine-doped polysilane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lagarde, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moisan, J. Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dubois, J. C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Molecular engineering</subfield><subfield code="d">1991</subfield><subfield code="g">1(1991) vom: März, Seite 221-230</subfield><subfield code="w">(DE-627)NLEJ188990151</subfield><subfield code="w">(DE-600)2003655-3</subfield><subfield code="x">1572-8951</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1991</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:221-230</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF00161665</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1991</subfield><subfield code="c">3</subfield><subfield code="h">221-230</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188990151 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-8951 |
topic_title |
Holes photogeneration in phthalocyanine-doped polysilane |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m l ml j y m jy jym j c d jc jcd |
hierarchy_parent_title |
Molecular engineering |
hierarchy_parent_id |
NLEJ188990151 |
hierarchy_top_title |
Molecular engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188990151 (DE-600)2003655-3 |
title |
Holes photogeneration in phthalocyanine-doped polysilane |
spellingShingle |
Holes photogeneration in phthalocyanine-doped polysilane |
ctrlnum |
(DE-627)NLEJ195190866 |
title_full |
Holes photogeneration in phthalocyanine-doped polysilane |
journal |
Molecular engineering |
journalStr |
Molecular engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1991 |
contenttype_str_mv |
zzz |
container_start_page |
221 |
container_volume |
1 |
physical |
10 |
format_se |
Elektronische Aufsätze |
title_sort |
holes photogeneration in phthalocyanine-doped polysilane |
title_auth |
Holes photogeneration in phthalocyanine-doped polysilane |
abstract |
Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. |
abstractGer |
Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. |
abstract_unstemmed |
Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Holes photogeneration in phthalocyanine-doped polysilane |
url |
http://dx.doi.org/10.1007/BF00161665 |
remote_bool |
true |
author2 |
Lagarde, M. Moisan, J. Y. Dubois, J. C. |
author2Str |
Lagarde, M. Moisan, J. Y. Dubois, J. C. |
ppnlink |
NLEJ188990151 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
up_date |
2024-07-06T02:59:33.060Z |
_version_ |
1803796897396162560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ195190866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210708003609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1991 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ195190866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holes photogeneration in phthalocyanine-doped polysilane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Polysilane polymers are attractive photoconductive materials, due to the high mobility of the charge carriers (holes). The photoconductivity in the visible region is greatly enhanced by the addition of a phthalocyanine, because the dopant increases the absorption of light and the quantum yield of the holes photogeneration. The quantum yield has been measured by the technique of xerographic discharge at several values of the polarisation field. From these data the intrinsic quantum yield Φ0 and the thermalisation distance r 0 were calculated. r 0 is similar to the value measured in the trinitrofluorenone doped polyvinylcarbazole system (27.5 Å) while Φ0 is much lower (2.8·10−2 compared to 0.11). In fact, r 0 is assumed to be mainly dependent on the polymeric environment, while Φ0 depends on the nature of the coupling between the dopant and the polymer.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lagarde, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moisan, J. Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dubois, J. C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Molecular engineering</subfield><subfield code="d">1991</subfield><subfield code="g">1(1991) vom: März, Seite 221-230</subfield><subfield code="w">(DE-627)NLEJ188990151</subfield><subfield code="w">(DE-600)2003655-3</subfield><subfield code="x">1572-8951</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1991</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:221-230</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF00161665</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1991</subfield><subfield code="c">3</subfield><subfield code="h">221-230</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.4007854 |