Autoregressive-output-analysis methods revisited
Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is st...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1994 |
---|
Umfang: |
28 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Annals of operations research - 1984, 53(1994) vom: Jan., Seite 391-418 |
Übergeordnetes Werk: |
volume:53 ; year:1994 ; month:01 ; pages:391-418 ; extent:28 |
Links: |
---|
Katalog-ID: |
NLEJ196412986 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ196412986 | ||
003 | DE-627 | ||
005 | 20210705190830.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070526s1994 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ196412986 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Autoregressive-output-analysis methods revisited |
264 | 1 | |c 1994 | |
300 | |a 28 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Yuan, Mingjian |4 oth | |
700 | 1 | |a Nelson, Barry L. |4 oth | |
773 | 0 | 8 | |i in |t Annals of operations research |d 1984 |g 53(1994) vom: Jan., Seite 391-418 |w (DE-627)NLEJ188988866 |w (DE-600)2021913-1 |x 1572-9338 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:1994 |g month:01 |g pages:391-418 |g extent:28 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF02136836 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 53 |j 1994 |c 1 |h 391-418 |g 28 |
matchkey_str |
article:15729338:1994----::uoersieuptnlsseh |
---|---|
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
(DE-627)NLEJ196412986 DE-627 ger DE-627 rakwb eng Autoregressive-output-analysis methods revisited 1994 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. Springer Online Journal Archives 1860-2002 Yuan, Mingjian oth Nelson, Barry L. oth in Annals of operations research 1984 53(1994) vom: Jan., Seite 391-418 (DE-627)NLEJ188988866 (DE-600)2021913-1 1572-9338 nnns volume:53 year:1994 month:01 pages:391-418 extent:28 http://dx.doi.org/10.1007/BF02136836 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 53 1994 1 391-418 28 |
spelling |
(DE-627)NLEJ196412986 DE-627 ger DE-627 rakwb eng Autoregressive-output-analysis methods revisited 1994 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. Springer Online Journal Archives 1860-2002 Yuan, Mingjian oth Nelson, Barry L. oth in Annals of operations research 1984 53(1994) vom: Jan., Seite 391-418 (DE-627)NLEJ188988866 (DE-600)2021913-1 1572-9338 nnns volume:53 year:1994 month:01 pages:391-418 extent:28 http://dx.doi.org/10.1007/BF02136836 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 53 1994 1 391-418 28 |
allfields_unstemmed |
(DE-627)NLEJ196412986 DE-627 ger DE-627 rakwb eng Autoregressive-output-analysis methods revisited 1994 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. Springer Online Journal Archives 1860-2002 Yuan, Mingjian oth Nelson, Barry L. oth in Annals of operations research 1984 53(1994) vom: Jan., Seite 391-418 (DE-627)NLEJ188988866 (DE-600)2021913-1 1572-9338 nnns volume:53 year:1994 month:01 pages:391-418 extent:28 http://dx.doi.org/10.1007/BF02136836 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 53 1994 1 391-418 28 |
allfieldsGer |
(DE-627)NLEJ196412986 DE-627 ger DE-627 rakwb eng Autoregressive-output-analysis methods revisited 1994 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. Springer Online Journal Archives 1860-2002 Yuan, Mingjian oth Nelson, Barry L. oth in Annals of operations research 1984 53(1994) vom: Jan., Seite 391-418 (DE-627)NLEJ188988866 (DE-600)2021913-1 1572-9338 nnns volume:53 year:1994 month:01 pages:391-418 extent:28 http://dx.doi.org/10.1007/BF02136836 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 53 1994 1 391-418 28 |
allfieldsSound |
(DE-627)NLEJ196412986 DE-627 ger DE-627 rakwb eng Autoregressive-output-analysis methods revisited 1994 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. Springer Online Journal Archives 1860-2002 Yuan, Mingjian oth Nelson, Barry L. oth in Annals of operations research 1984 53(1994) vom: Jan., Seite 391-418 (DE-627)NLEJ188988866 (DE-600)2021913-1 1572-9338 nnns volume:53 year:1994 month:01 pages:391-418 extent:28 http://dx.doi.org/10.1007/BF02136836 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 53 1994 1 391-418 28 |
language |
English |
source |
in Annals of operations research 53(1994) vom: Jan., Seite 391-418 volume:53 year:1994 month:01 pages:391-418 extent:28 |
sourceStr |
in Annals of operations research 53(1994) vom: Jan., Seite 391-418 volume:53 year:1994 month:01 pages:391-418 extent:28 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Annals of operations research |
authorswithroles_txt_mv |
Yuan, Mingjian @@oth@@ Nelson, Barry L. @@oth@@ |
publishDateDaySort_date |
1994-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188988866 |
id |
NLEJ196412986 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ196412986</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705190830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1994 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ196412986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autoregressive-output-analysis methods revisited</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">28</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Barry L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Annals of operations research</subfield><subfield code="d">1984</subfield><subfield code="g">53(1994) vom: Jan., Seite 391-418</subfield><subfield code="w">(DE-627)NLEJ188988866</subfield><subfield code="w">(DE-600)2021913-1</subfield><subfield code="x">1572-9338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:1994</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:391-418</subfield><subfield code="g">extent:28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02136836</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">1994</subfield><subfield code="c">1</subfield><subfield code="h">391-418</subfield><subfield code="g">28</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188988866 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9338 |
topic_title |
Autoregressive-output-analysis methods revisited |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m y my b l n bl bln |
hierarchy_parent_title |
Annals of operations research |
hierarchy_parent_id |
NLEJ188988866 |
hierarchy_top_title |
Annals of operations research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188988866 (DE-600)2021913-1 |
title |
Autoregressive-output-analysis methods revisited |
spellingShingle |
Autoregressive-output-analysis methods revisited |
ctrlnum |
(DE-627)NLEJ196412986 |
title_full |
Autoregressive-output-analysis methods revisited |
journal |
Annals of operations research |
journalStr |
Annals of operations research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
zzz |
container_start_page |
391 |
container_volume |
53 |
physical |
28 |
format_se |
Elektronische Aufsätze |
title_sort |
autoregressive-output-analysis methods revisited |
title_auth |
Autoregressive-output-analysis methods revisited |
abstract |
Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. |
abstractGer |
Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. |
abstract_unstemmed |
Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Autoregressive-output-analysis methods revisited |
url |
http://dx.doi.org/10.1007/BF02136836 |
remote_bool |
true |
author2 |
Yuan, Mingjian Nelson, Barry L. |
author2Str |
Yuan, Mingjian Nelson, Barry L. |
ppnlink |
NLEJ188988866 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-06T06:21:37.061Z |
_version_ |
1803809610333683712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ196412986</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705190830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070526s1994 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ196412986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autoregressive-output-analysis methods revisited</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">28</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We revisit and update the autoregressive-output-analysis method for constructing a confidence interval for the steady-state mean of a simulated process by using Rissanen's predictive least-squares criterion to estimate the autoregressive order of the process. This order estimator is strongly consistent when the output is autoregressive. The order estimator is combined with the standard autoregressive-output-analysis method to form a confidence-interval procedure. Alternatives for estimating the degrees of freedom for the procedure are investigated. The main result is an asymptotically valid confidence-interval procedure that, empirically, has good small-sample properties.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Barry L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Annals of operations research</subfield><subfield code="d">1984</subfield><subfield code="g">53(1994) vom: Jan., Seite 391-418</subfield><subfield code="w">(DE-627)NLEJ188988866</subfield><subfield code="w">(DE-600)2021913-1</subfield><subfield code="x">1572-9338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:1994</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:391-418</subfield><subfield code="g">extent:28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02136836</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">1994</subfield><subfield code="c">1</subfield><subfield code="h">391-418</subfield><subfield code="g">28</subfield></datafield></record></collection>
|
score |
7.4013557 |