Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice
Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion consta...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1989 |
---|
Umfang: |
8 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Journal of statistical physics - 1969, 55(1989) vom: Jan./Feb., Seite 461-468 |
Übergeordnetes Werk: |
volume:55 ; year:1989 ; month:01/02 ; pages:461-468 ; extent:8 |
Links: |
---|
Katalog-ID: |
NLEJ197921914 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ197921914 | ||
003 | DE-627 | ||
005 | 20210705230110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1989 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ197921914 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
264 | 1 | |c 1989 | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Aslangul, Claude |4 oth | |
700 | 1 | |a Bouchaud, Jean -Philippe |4 oth | |
700 | 1 | |a Georges, Antoine |4 oth | |
700 | 1 | |a Pottier, Noëlle |4 oth | |
700 | 1 | |a Saint-James, Daniel |4 oth | |
773 | 0 | 8 | |i in |t Journal of statistical physics |d 1969 |g 55(1989) vom: Jan./Feb., Seite 461-468 |w (DE-627)NLEJ188991786 |w (DE-600)2017302-7 |x 1572-9613 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:1989 |g month:01/02 |g pages:461-468 |g extent:8 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01042612 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 55 |j 1989 |c 1/2 |h 461-468 |g 8 |
matchkey_str |
article:15729613:1989----::xcrslsnslaeaigrprisornornowlsnoei |
---|---|
hierarchy_sort_str |
1989 |
publishDate |
1989 |
allfields |
(DE-627)NLEJ197921914 DE-627 ger DE-627 rakwb eng Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice 1989 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. Springer Online Journal Archives 1860-2002 Aslangul, Claude oth Bouchaud, Jean -Philippe oth Georges, Antoine oth Pottier, Noëlle oth Saint-James, Daniel oth in Journal of statistical physics 1969 55(1989) vom: Jan./Feb., Seite 461-468 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:55 year:1989 month:01/02 pages:461-468 extent:8 http://dx.doi.org/10.1007/BF01042612 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 55 1989 1/2 461-468 8 |
spelling |
(DE-627)NLEJ197921914 DE-627 ger DE-627 rakwb eng Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice 1989 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. Springer Online Journal Archives 1860-2002 Aslangul, Claude oth Bouchaud, Jean -Philippe oth Georges, Antoine oth Pottier, Noëlle oth Saint-James, Daniel oth in Journal of statistical physics 1969 55(1989) vom: Jan./Feb., Seite 461-468 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:55 year:1989 month:01/02 pages:461-468 extent:8 http://dx.doi.org/10.1007/BF01042612 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 55 1989 1/2 461-468 8 |
allfields_unstemmed |
(DE-627)NLEJ197921914 DE-627 ger DE-627 rakwb eng Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice 1989 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. Springer Online Journal Archives 1860-2002 Aslangul, Claude oth Bouchaud, Jean -Philippe oth Georges, Antoine oth Pottier, Noëlle oth Saint-James, Daniel oth in Journal of statistical physics 1969 55(1989) vom: Jan./Feb., Seite 461-468 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:55 year:1989 month:01/02 pages:461-468 extent:8 http://dx.doi.org/10.1007/BF01042612 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 55 1989 1/2 461-468 8 |
allfieldsGer |
(DE-627)NLEJ197921914 DE-627 ger DE-627 rakwb eng Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice 1989 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. Springer Online Journal Archives 1860-2002 Aslangul, Claude oth Bouchaud, Jean -Philippe oth Georges, Antoine oth Pottier, Noëlle oth Saint-James, Daniel oth in Journal of statistical physics 1969 55(1989) vom: Jan./Feb., Seite 461-468 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:55 year:1989 month:01/02 pages:461-468 extent:8 http://dx.doi.org/10.1007/BF01042612 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 55 1989 1/2 461-468 8 |
allfieldsSound |
(DE-627)NLEJ197921914 DE-627 ger DE-627 rakwb eng Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice 1989 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. Springer Online Journal Archives 1860-2002 Aslangul, Claude oth Bouchaud, Jean -Philippe oth Georges, Antoine oth Pottier, Noëlle oth Saint-James, Daniel oth in Journal of statistical physics 1969 55(1989) vom: Jan./Feb., Seite 461-468 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:55 year:1989 month:01/02 pages:461-468 extent:8 http://dx.doi.org/10.1007/BF01042612 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 55 1989 1/2 461-468 8 |
language |
English |
source |
in Journal of statistical physics 55(1989) vom: Jan./Feb., Seite 461-468 volume:55 year:1989 month:01/02 pages:461-468 extent:8 |
sourceStr |
in Journal of statistical physics 55(1989) vom: Jan./Feb., Seite 461-468 volume:55 year:1989 month:01/02 pages:461-468 extent:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Journal of statistical physics |
authorswithroles_txt_mv |
Aslangul, Claude @@oth@@ Bouchaud, Jean -Philippe @@oth@@ Georges, Antoine @@oth@@ Pottier, Noëlle @@oth@@ Saint-James, Daniel @@oth@@ |
publishDateDaySort_date |
1989-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188991786 |
id |
NLEJ197921914 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ197921914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705230110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1989 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ197921914</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aslangul, Claude</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouchaud, Jean -Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georges, Antoine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pottier, Noëlle</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saint-James, Daniel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">1969</subfield><subfield code="g">55(1989) vom: Jan./Feb., Seite 461-468</subfield><subfield code="w">(DE-627)NLEJ188991786</subfield><subfield code="w">(DE-600)2017302-7</subfield><subfield code="x">1572-9613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:1989</subfield><subfield code="g">month:01/02</subfield><subfield code="g">pages:461-468</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01042612</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">1989</subfield><subfield code="c">1/2</subfield><subfield code="h">461-468</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188991786 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9613 |
topic_title |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c a ca j - b j- j-b a g ag n p np d s j dsj |
hierarchy_parent_title |
Journal of statistical physics |
hierarchy_parent_id |
NLEJ188991786 |
hierarchy_top_title |
Journal of statistical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188991786 (DE-600)2017302-7 |
title |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
spellingShingle |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
ctrlnum |
(DE-627)NLEJ197921914 |
title_full |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
journal |
Journal of statistical physics |
journalStr |
Journal of statistical physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1989 |
contenttype_str_mv |
zzz |
container_start_page |
461 |
container_volume |
55 |
physical |
8 |
format_se |
Elektronische Aufsätze |
title_sort |
exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
title_auth |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
abstract |
Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. |
abstractGer |
Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. |
abstract_unstemmed |
Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice |
url |
http://dx.doi.org/10.1007/BF01042612 |
remote_bool |
true |
author2 |
Aslangul, Claude Bouchaud, Jean -Philippe Georges, Antoine Pottier, Noëlle Saint-James, Daniel |
author2Str |
Aslangul, Claude Bouchaud, Jean -Philippe Georges, Antoine Pottier, Noëlle Saint-James, Daniel |
ppnlink |
NLEJ188991786 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
up_date |
2024-07-06T10:06:26.806Z |
_version_ |
1803823755356536832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ197921914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705230110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1989 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ197921914</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present new exact results for a one-dimensional asymmetric disordered hopping model. The lattice is taken infinite from the start and we do not resort to the periodization scheme used by Derrida. An explicit resummation allows for the calculation of the velocityV and the diffusion constantD (which are found to coincide with those given by Derrida) and for demonstrating thatV is indeed a self-averaging quantity; the same property is established forD in the limiting case of a directed walk.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aslangul, Claude</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouchaud, Jean -Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georges, Antoine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pottier, Noëlle</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saint-James, Daniel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">1969</subfield><subfield code="g">55(1989) vom: Jan./Feb., Seite 461-468</subfield><subfield code="w">(DE-627)NLEJ188991786</subfield><subfield code="w">(DE-600)2017302-7</subfield><subfield code="x">1572-9613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:1989</subfield><subfield code="g">month:01/02</subfield><subfield code="g">pages:461-468</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01042612</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">1989</subfield><subfield code="c">1/2</subfield><subfield code="h">461-468</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4000835 |