Ising models, julia sets, and similarity of the maximal entropy measures
Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this mode...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Umfang: |
11 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Journal of statistical physics - 1969, 78(1995) vom: März/Apr., Seite 815-825 |
Übergeordnetes Werk: |
volume:78 ; year:1995 ; month:03/04 ; pages:815-825 ; extent:11 |
Links: |
---|
Katalog-ID: |
NLEJ197937977 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ197937977 | ||
003 | DE-627 | ||
005 | 20210705230343.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1995 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ197937977 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Ising models, julia sets, and similarity of the maximal entropy measures |
264 | 1 | |c 1995 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Ishii, Yutaka |4 oth | |
773 | 0 | 8 | |i in |t Journal of statistical physics |d 1969 |g 78(1995) vom: März/Apr., Seite 815-825 |w (DE-627)NLEJ188991786 |w (DE-600)2017302-7 |x 1572-9613 |7 nnns |
773 | 1 | 8 | |g volume:78 |g year:1995 |g month:03/04 |g pages:815-825 |g extent:11 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF02183689 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 78 |j 1995 |c 3/4 |h 815-825 |g 11 |
matchkey_str |
article:15729613:1995----::snmdljlaesnsmlrtoteaia |
---|---|
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
(DE-627)NLEJ197937977 DE-627 ger DE-627 rakwb eng Ising models, julia sets, and similarity of the maximal entropy measures 1995 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Journal of statistical physics 1969 78(1995) vom: März/Apr., Seite 815-825 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:78 year:1995 month:03/04 pages:815-825 extent:11 http://dx.doi.org/10.1007/BF02183689 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 78 1995 3/4 815-825 11 |
spelling |
(DE-627)NLEJ197937977 DE-627 ger DE-627 rakwb eng Ising models, julia sets, and similarity of the maximal entropy measures 1995 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Journal of statistical physics 1969 78(1995) vom: März/Apr., Seite 815-825 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:78 year:1995 month:03/04 pages:815-825 extent:11 http://dx.doi.org/10.1007/BF02183689 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 78 1995 3/4 815-825 11 |
allfields_unstemmed |
(DE-627)NLEJ197937977 DE-627 ger DE-627 rakwb eng Ising models, julia sets, and similarity of the maximal entropy measures 1995 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Journal of statistical physics 1969 78(1995) vom: März/Apr., Seite 815-825 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:78 year:1995 month:03/04 pages:815-825 extent:11 http://dx.doi.org/10.1007/BF02183689 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 78 1995 3/4 815-825 11 |
allfieldsGer |
(DE-627)NLEJ197937977 DE-627 ger DE-627 rakwb eng Ising models, julia sets, and similarity of the maximal entropy measures 1995 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Journal of statistical physics 1969 78(1995) vom: März/Apr., Seite 815-825 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:78 year:1995 month:03/04 pages:815-825 extent:11 http://dx.doi.org/10.1007/BF02183689 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 78 1995 3/4 815-825 11 |
allfieldsSound |
(DE-627)NLEJ197937977 DE-627 ger DE-627 rakwb eng Ising models, julia sets, and similarity of the maximal entropy measures 1995 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Journal of statistical physics 1969 78(1995) vom: März/Apr., Seite 815-825 (DE-627)NLEJ188991786 (DE-600)2017302-7 1572-9613 nnns volume:78 year:1995 month:03/04 pages:815-825 extent:11 http://dx.doi.org/10.1007/BF02183689 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 78 1995 3/4 815-825 11 |
language |
English |
source |
in Journal of statistical physics 78(1995) vom: März/Apr., Seite 815-825 volume:78 year:1995 month:03/04 pages:815-825 extent:11 |
sourceStr |
in Journal of statistical physics 78(1995) vom: März/Apr., Seite 815-825 volume:78 year:1995 month:03/04 pages:815-825 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Journal of statistical physics |
authorswithroles_txt_mv |
Ishii, Yutaka @@oth@@ |
publishDateDaySort_date |
1995-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188991786 |
id |
NLEJ197937977 |
language_de |
englisch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ197937977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705230343.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1995 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ197937977</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ising models, julia sets, and similarity of the maximal entropy measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">1969</subfield><subfield code="g">78(1995) vom: März/Apr., Seite 815-825</subfield><subfield code="w">(DE-627)NLEJ188991786</subfield><subfield code="w">(DE-600)2017302-7</subfield><subfield code="x">1572-9613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:1995</subfield><subfield code="g">month:03/04</subfield><subfield code="g">pages:815-825</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02183689</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">1995</subfield><subfield code="c">3/4</subfield><subfield code="h">815-825</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ197937977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210705230343.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1995 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ197937977</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ising models, julia sets, and similarity of the maximal entropy measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">1969</subfield><subfield code="g">78(1995) vom: März/Apr., Seite 815-825</subfield><subfield code="w">(DE-627)NLEJ188991786</subfield><subfield code="w">(DE-600)2017302-7</subfield><subfield code="x">1572-9613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:1995</subfield><subfield code="g">month:03/04</subfield><subfield code="g">pages:815-825</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02183689</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">1995</subfield><subfield code="c">3/4</subfield><subfield code="h">815-825</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188991786 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9613 |
topic_title |
Ising models, julia sets, and similarity of the maximal entropy measures |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y i yi |
hierarchy_parent_title |
Journal of statistical physics |
hierarchy_parent_id |
NLEJ188991786 |
hierarchy_top_title |
Journal of statistical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188991786 (DE-600)2017302-7 |
title |
Ising models, julia sets, and similarity of the maximal entropy measures |
spellingShingle |
Ising models, julia sets, and similarity of the maximal entropy measures |
ctrlnum |
(DE-627)NLEJ197937977 |
title_full |
Ising models, julia sets, and similarity of the maximal entropy measures |
journal |
Journal of statistical physics |
journalStr |
Journal of statistical physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
zzz |
container_start_page |
815 |
container_volume |
78 |
physical |
11 |
format_se |
Elektronische Aufsätze |
title_sort |
ising models, julia sets, and similarity of the maximal entropy measures |
title_auth |
Ising models, julia sets, and similarity of the maximal entropy measures |
abstract |
Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. |
abstractGer |
Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. |
abstract_unstemmed |
Abstract We study the phase transition of Ising models on diamondlike hierarchical lattices. Following an idea of Lee and Yang, one can make an analytic continuation of free energy of this model to the complex temperature plane. It is known that the Migdal-Kadanoff renormalization group of this model is a rational endomorphism (denoted byf) of Ĉ and that the singularities of the free energy lie on the Julia setJ(f). The aim of this paper is to prove that the free energy can be represented as the logarithmic potential of the maximal entropy measure onJ(f). Moreover, using this representation, we can show a close relationship between the critical exponent and local similarity of this measure. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Ising models, julia sets, and similarity of the maximal entropy measures |
url |
http://dx.doi.org/10.1007/BF02183689 |
remote_bool |
true |
author2 |
Ishii, Yutaka |
author2Str |
Ishii, Yutaka |
ppnlink |
NLEJ188991786 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T10:08:36.790Z |
_version_ |
1803823891653591040 |
score |
7.4003134 |