Amorphe Potenzen kompakter Räume
Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 s...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Deutsch |
Erschienen: |
1984 |
---|
Umfang: |
17 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Archive for mathematical logic - 1950, 24(1984) vom: Jan., Seite 119-135 |
Übergeordnetes Werk: |
volume:24 ; year:1984 ; month:01 ; pages:119-135 ; extent:17 |
Links: |
---|
Katalog-ID: |
NLEJ200053426 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ200053426 | ||
003 | DE-627 | ||
005 | 20210706040427.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1984 xx |||||o 00| ||ger c | ||
035 | |a (DE-627)NLEJ200053426 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a ger | ||
245 | 1 | 0 | |a Amorphe Potenzen kompakter Räume |
264 | 1 | |c 1984 | |
300 | |a 17 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Brunner, Norbert |4 oth | |
773 | 0 | 8 | |i in |t Archive for mathematical logic |d 1950 |g 24(1984) vom: Jan., Seite 119-135 |w (DE-627)NLEJ188992863 |w (DE-600)1398309-x |x 1432-0665 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:1984 |g month:01 |g pages:119-135 |g extent:17 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF02007144 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 24 |j 1984 |c 1 |h 119-135 |g 17 |
matchkey_str |
article:14320665:1984----::mrhptnekma |
---|---|
hierarchy_sort_str |
1984 |
publishDate |
1984 |
allfields |
(DE-627)NLEJ200053426 DE-627 ger DE-627 rakwb ger Amorphe Potenzen kompakter Räume 1984 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Archive for mathematical logic 1950 24(1984) vom: Jan., Seite 119-135 (DE-627)NLEJ188992863 (DE-600)1398309-x 1432-0665 nnns volume:24 year:1984 month:01 pages:119-135 extent:17 http://dx.doi.org/10.1007/BF02007144 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 24 1984 1 119-135 17 |
spelling |
(DE-627)NLEJ200053426 DE-627 ger DE-627 rakwb ger Amorphe Potenzen kompakter Räume 1984 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Archive for mathematical logic 1950 24(1984) vom: Jan., Seite 119-135 (DE-627)NLEJ188992863 (DE-600)1398309-x 1432-0665 nnns volume:24 year:1984 month:01 pages:119-135 extent:17 http://dx.doi.org/10.1007/BF02007144 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 24 1984 1 119-135 17 |
allfields_unstemmed |
(DE-627)NLEJ200053426 DE-627 ger DE-627 rakwb ger Amorphe Potenzen kompakter Räume 1984 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Archive for mathematical logic 1950 24(1984) vom: Jan., Seite 119-135 (DE-627)NLEJ188992863 (DE-600)1398309-x 1432-0665 nnns volume:24 year:1984 month:01 pages:119-135 extent:17 http://dx.doi.org/10.1007/BF02007144 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 24 1984 1 119-135 17 |
allfieldsGer |
(DE-627)NLEJ200053426 DE-627 ger DE-627 rakwb ger Amorphe Potenzen kompakter Räume 1984 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Archive for mathematical logic 1950 24(1984) vom: Jan., Seite 119-135 (DE-627)NLEJ188992863 (DE-600)1398309-x 1432-0665 nnns volume:24 year:1984 month:01 pages:119-135 extent:17 http://dx.doi.org/10.1007/BF02007144 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 24 1984 1 119-135 17 |
allfieldsSound |
(DE-627)NLEJ200053426 DE-627 ger DE-627 rakwb ger Amorphe Potenzen kompakter Räume 1984 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Archive for mathematical logic 1950 24(1984) vom: Jan., Seite 119-135 (DE-627)NLEJ188992863 (DE-600)1398309-x 1432-0665 nnns volume:24 year:1984 month:01 pages:119-135 extent:17 http://dx.doi.org/10.1007/BF02007144 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 24 1984 1 119-135 17 |
language |
German |
source |
in Archive for mathematical logic 24(1984) vom: Jan., Seite 119-135 volume:24 year:1984 month:01 pages:119-135 extent:17 |
sourceStr |
in Archive for mathematical logic 24(1984) vom: Jan., Seite 119-135 volume:24 year:1984 month:01 pages:119-135 extent:17 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Archive for mathematical logic |
authorswithroles_txt_mv |
Brunner, Norbert @@oth@@ |
publishDateDaySort_date |
1984-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188992863 |
id |
NLEJ200053426 |
language_de |
deutsch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ200053426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706040427.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1984 xx |||||o 00| ||ger c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ200053426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Amorphe Potenzen kompakter Räume</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunner, Norbert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Archive for mathematical logic</subfield><subfield code="d">1950</subfield><subfield code="g">24(1984) vom: Jan., Seite 119-135</subfield><subfield code="w">(DE-627)NLEJ188992863</subfield><subfield code="w">(DE-600)1398309-x</subfield><subfield code="x">1432-0665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:1984</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:119-135</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02007144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">1984</subfield><subfield code="c">1</subfield><subfield code="h">119-135</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188992863 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-0665 |
topic_title |
Amorphe Potenzen kompakter Räume |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n b nb |
hierarchy_parent_title |
Archive for mathematical logic |
hierarchy_parent_id |
NLEJ188992863 |
hierarchy_top_title |
Archive for mathematical logic |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188992863 (DE-600)1398309-x |
title |
Amorphe Potenzen kompakter Räume |
spellingShingle |
Amorphe Potenzen kompakter Räume |
ctrlnum |
(DE-627)NLEJ200053426 |
title_full |
Amorphe Potenzen kompakter Räume |
journal |
Archive for mathematical logic |
journalStr |
Archive for mathematical logic |
lang_code |
ger |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1984 |
contenttype_str_mv |
zzz |
container_start_page |
119 |
container_volume |
24 |
physical |
17 |
format_se |
Elektronische Aufsätze |
title_sort |
amorphe potenzen kompakter räume |
title_auth |
Amorphe Potenzen kompakter Räume |
abstract |
Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. |
abstractGer |
Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. |
abstract_unstemmed |
Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Amorphe Potenzen kompakter Räume |
url |
http://dx.doi.org/10.1007/BF02007144 |
remote_bool |
true |
author2 |
Brunner, Norbert |
author2Str |
Brunner, Norbert |
ppnlink |
NLEJ188992863 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T01:50:19.743Z |
_version_ |
1803792542327635968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ200053426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706040427.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1984 xx |||||o 00| ||ger c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ200053426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Amorphe Potenzen kompakter Räume</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunner, Norbert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Archive for mathematical logic</subfield><subfield code="d">1950</subfield><subfield code="g">24(1984) vom: Jan., Seite 119-135</subfield><subfield code="w">(DE-627)NLEJ188992863</subfield><subfield code="w">(DE-600)1398309-x</subfield><subfield code="x">1432-0665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:1984</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:119-135</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF02007144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">1984</subfield><subfield code="c">1</subfield><subfield code="h">119-135</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
score |
7.4005327 |