Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors
Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in ter...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Umfang: |
20 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Communications in mathematical physics - 1965, 190(1997) vom: Feb., Seite 375-394 |
Übergeordnetes Werk: |
volume:190 ; year:1997 ; month:02 ; pages:375-394 ; extent:20 |
Links: |
---|
Katalog-ID: |
NLEJ202210707 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ202210707 | ||
003 | DE-627 | ||
005 | 20210706093607.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1997 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ202210707 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
264 | 1 | |c 1997 | |
300 | |a 20 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Ishii, Yutaka |4 oth | |
773 | 0 | 8 | |i in |t Communications in mathematical physics |d 1965 |g 190(1997) vom: Feb., Seite 375-394 |w (DE-627)NLEJ188990305 |w (DE-600)1458931-x |x 1432-0916 |7 nnns |
773 | 1 | 8 | |g volume:190 |g year:1997 |g month:02 |g pages:375-394 |g extent:20 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s002200050245 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 190 |j 1997 |c 2 |h 375-394 |g 20 |
matchkey_str |
article:14320916:1997----::oadanaighoyolzmpigimntnctoteoooiaetoynh |
---|---|
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
(DE-627)NLEJ202210707 DE-627 ger DE-627 rakwb eng Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors 1997 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Communications in mathematical physics 1965 190(1997) vom: Feb., Seite 375-394 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:190 year:1997 month:02 pages:375-394 extent:20 http://dx.doi.org/10.1007/s002200050245 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 190 1997 2 375-394 20 |
spelling |
(DE-627)NLEJ202210707 DE-627 ger DE-627 rakwb eng Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors 1997 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Communications in mathematical physics 1965 190(1997) vom: Feb., Seite 375-394 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:190 year:1997 month:02 pages:375-394 extent:20 http://dx.doi.org/10.1007/s002200050245 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 190 1997 2 375-394 20 |
allfields_unstemmed |
(DE-627)NLEJ202210707 DE-627 ger DE-627 rakwb eng Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors 1997 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Communications in mathematical physics 1965 190(1997) vom: Feb., Seite 375-394 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:190 year:1997 month:02 pages:375-394 extent:20 http://dx.doi.org/10.1007/s002200050245 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 190 1997 2 375-394 20 |
allfieldsGer |
(DE-627)NLEJ202210707 DE-627 ger DE-627 rakwb eng Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors 1997 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Communications in mathematical physics 1965 190(1997) vom: Feb., Seite 375-394 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:190 year:1997 month:02 pages:375-394 extent:20 http://dx.doi.org/10.1007/s002200050245 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 190 1997 2 375-394 20 |
allfieldsSound |
(DE-627)NLEJ202210707 DE-627 ger DE-627 rakwb eng Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors 1997 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire Springer Online Journal Archives 1860-2002 Ishii, Yutaka oth in Communications in mathematical physics 1965 190(1997) vom: Feb., Seite 375-394 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:190 year:1997 month:02 pages:375-394 extent:20 http://dx.doi.org/10.1007/s002200050245 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 190 1997 2 375-394 20 |
language |
English |
source |
in Communications in mathematical physics 190(1997) vom: Feb., Seite 375-394 volume:190 year:1997 month:02 pages:375-394 extent:20 |
sourceStr |
in Communications in mathematical physics 190(1997) vom: Feb., Seite 375-394 volume:190 year:1997 month:02 pages:375-394 extent:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Ishii, Yutaka @@oth@@ |
publishDateDaySort_date |
1997-02-01T00:00:00Z |
hierarchy_top_id |
NLEJ188990305 |
id |
NLEJ202210707 |
language_de |
englisch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202210707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706093607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1997 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202210707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">1965</subfield><subfield code="g">190(1997) vom: Feb., Seite 375-394</subfield><subfield code="w">(DE-627)NLEJ188990305</subfield><subfield code="w">(DE-600)1458931-x</subfield><subfield code="x">1432-0916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:1997</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:375-394</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s002200050245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">1997</subfield><subfield code="c">2</subfield><subfield code="h">375-394</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202210707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706093607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1997 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202210707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">1965</subfield><subfield code="g">190(1997) vom: Feb., Seite 375-394</subfield><subfield code="w">(DE-627)NLEJ188990305</subfield><subfield code="w">(DE-600)1458931-x</subfield><subfield code="x">1432-0916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:1997</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:375-394</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s002200050245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">1997</subfield><subfield code="c">2</subfield><subfield code="h">375-394</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188990305 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-0916 |
topic_title |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y i yi |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
NLEJ188990305 |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188990305 (DE-600)1458931-x |
title |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
spellingShingle |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
ctrlnum |
(DE-627)NLEJ202210707 |
title_full |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
zzz |
container_start_page |
375 |
container_volume |
190 |
physical |
20 |
format_se |
Elektronische Aufsätze |
title_sort |
towards a kneading theory for lozi mappings. ii: monotonicity of the topological entropy and hausdorff dimension of attractors |
title_auth |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
abstract |
Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire |
abstractGer |
Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire |
abstract_unstemmed |
Abstract: We construct a kneading theory à la Milnor–Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). In the first article a two-dimensional analogue of the kneading sequence called the pruning pair is defined, and a topological model of a Lozi mapping is constructed in terms of the pruning pair only. As an application of this result, in the current paper we show the partial monotonicity of the topological entropy and of bifurcations for the Lozi family near horseshoes. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor are also given in terms of parameters. Dédié au Professeur A. Douady pour son 60ème anniversaire |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Towards a Kneading Theory for Lozi Mappings. II: Monotonicity of the Topological Entropy and Hausdorff Dimension of Attractors |
url |
http://dx.doi.org/10.1007/s002200050245 |
remote_bool |
true |
author2 |
Ishii, Yutaka |
author2Str |
Ishii, Yutaka |
ppnlink |
NLEJ188990305 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T07:15:20.881Z |
_version_ |
1803812990753964032 |
score |
7.4007626 |