Sommerfeld-Watson representation for double-spectral functions
Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1975 |
---|
Umfang: |
16 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Communications in mathematical physics - 1965, 43(1975) vom: Jan., Seite 1-16 |
Übergeordnetes Werk: |
volume:43 ; year:1975 ; month:01 ; pages:1-16 ; extent:16 |
Links: |
---|
Katalog-ID: |
NLEJ202223531 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ202223531 | ||
003 | DE-627 | ||
005 | 20210706093751.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1975 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ202223531 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Sommerfeld-Watson representation for double-spectral functions |
264 | 1 | |c 1975 | |
300 | |a 16 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Frederiksen, J. S. |4 oth | |
773 | 0 | 8 | |i in |t Communications in mathematical physics |d 1965 |g 43(1975) vom: Jan., Seite 1-16 |w (DE-627)NLEJ188990305 |w (DE-600)1458931-x |x 1432-0916 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:1975 |g month:01 |g pages:1-16 |g extent:16 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01609136 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 43 |j 1975 |c 1 |h 1-16 |g 16 |
matchkey_str |
article:14320916:1975----::omredasnersnainodulse |
---|---|
hierarchy_sort_str |
1975 |
publishDate |
1975 |
allfields |
(DE-627)NLEJ202223531 DE-627 ger DE-627 rakwb eng Sommerfeld-Watson representation for double-spectral functions 1975 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. Springer Online Journal Archives 1860-2002 Frederiksen, J. S. oth in Communications in mathematical physics 1965 43(1975) vom: Jan., Seite 1-16 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:43 year:1975 month:01 pages:1-16 extent:16 http://dx.doi.org/10.1007/BF01609136 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 43 1975 1 1-16 16 |
spelling |
(DE-627)NLEJ202223531 DE-627 ger DE-627 rakwb eng Sommerfeld-Watson representation for double-spectral functions 1975 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. Springer Online Journal Archives 1860-2002 Frederiksen, J. S. oth in Communications in mathematical physics 1965 43(1975) vom: Jan., Seite 1-16 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:43 year:1975 month:01 pages:1-16 extent:16 http://dx.doi.org/10.1007/BF01609136 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 43 1975 1 1-16 16 |
allfields_unstemmed |
(DE-627)NLEJ202223531 DE-627 ger DE-627 rakwb eng Sommerfeld-Watson representation for double-spectral functions 1975 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. Springer Online Journal Archives 1860-2002 Frederiksen, J. S. oth in Communications in mathematical physics 1965 43(1975) vom: Jan., Seite 1-16 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:43 year:1975 month:01 pages:1-16 extent:16 http://dx.doi.org/10.1007/BF01609136 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 43 1975 1 1-16 16 |
allfieldsGer |
(DE-627)NLEJ202223531 DE-627 ger DE-627 rakwb eng Sommerfeld-Watson representation for double-spectral functions 1975 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. Springer Online Journal Archives 1860-2002 Frederiksen, J. S. oth in Communications in mathematical physics 1965 43(1975) vom: Jan., Seite 1-16 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:43 year:1975 month:01 pages:1-16 extent:16 http://dx.doi.org/10.1007/BF01609136 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 43 1975 1 1-16 16 |
allfieldsSound |
(DE-627)NLEJ202223531 DE-627 ger DE-627 rakwb eng Sommerfeld-Watson representation for double-spectral functions 1975 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. Springer Online Journal Archives 1860-2002 Frederiksen, J. S. oth in Communications in mathematical physics 1965 43(1975) vom: Jan., Seite 1-16 (DE-627)NLEJ188990305 (DE-600)1458931-x 1432-0916 nnns volume:43 year:1975 month:01 pages:1-16 extent:16 http://dx.doi.org/10.1007/BF01609136 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 43 1975 1 1-16 16 |
language |
English |
source |
in Communications in mathematical physics 43(1975) vom: Jan., Seite 1-16 volume:43 year:1975 month:01 pages:1-16 extent:16 |
sourceStr |
in Communications in mathematical physics 43(1975) vom: Jan., Seite 1-16 volume:43 year:1975 month:01 pages:1-16 extent:16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Frederiksen, J. S. @@oth@@ |
publishDateDaySort_date |
1975-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188990305 |
id |
NLEJ202223531 |
language_de |
englisch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202223531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706093751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1975 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202223531</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sommerfeld-Watson representation for double-spectral functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1975</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frederiksen, J. S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">1965</subfield><subfield code="g">43(1975) vom: Jan., Seite 1-16</subfield><subfield code="w">(DE-627)NLEJ188990305</subfield><subfield code="w">(DE-600)1458931-x</subfield><subfield code="x">1432-0916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:1975</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-16</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01609136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">1975</subfield><subfield code="c">1</subfield><subfield code="h">1-16</subfield><subfield code="g">16</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202223531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706093751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1975 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202223531</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sommerfeld-Watson representation for double-spectral functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1975</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frederiksen, J. S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">1965</subfield><subfield code="g">43(1975) vom: Jan., Seite 1-16</subfield><subfield code="w">(DE-627)NLEJ188990305</subfield><subfield code="w">(DE-600)1458931-x</subfield><subfield code="x">1432-0916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:1975</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-16</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01609136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">1975</subfield><subfield code="c">1</subfield><subfield code="h">1-16</subfield><subfield code="g">16</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188990305 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-0916 |
topic_title |
Sommerfeld-Watson representation for double-spectral functions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j s f js jsf |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
NLEJ188990305 |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188990305 (DE-600)1458931-x |
title |
Sommerfeld-Watson representation for double-spectral functions |
spellingShingle |
Sommerfeld-Watson representation for double-spectral functions |
ctrlnum |
(DE-627)NLEJ202223531 |
title_full |
Sommerfeld-Watson representation for double-spectral functions |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1975 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
container_volume |
43 |
physical |
16 |
format_se |
Elektronische Aufsätze |
title_sort |
sommerfeld-watson representation for double-spectral functions |
title_auth |
Sommerfeld-Watson representation for double-spectral functions |
abstract |
Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. |
abstractGer |
Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. |
abstract_unstemmed |
Abstract We discuss, for the case of pion-pion scattering, a closed system of equations which may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given sufficiently small input function, the equations have a locally unique solution in a particular Banach space of doubly Hölder continuous partial wave amplitudes. At a fixed point, the scattering amplitude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the right half complex angular-momentum plane. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Sommerfeld-Watson representation for double-spectral functions |
url |
http://dx.doi.org/10.1007/BF01609136 |
remote_bool |
true |
author2 |
Frederiksen, J. S. |
author2Str |
Frederiksen, J. S. |
ppnlink |
NLEJ188990305 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T07:17:06.609Z |
_version_ |
1803813101617807360 |
score |
7.40047 |