Intermittency and regularized Fredholm determinants
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] a...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Umfang: |
24 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Inventiones mathematicae - 1966, 135(1999) vom: Jan., Seite 1-24 |
Übergeordnetes Werk: |
volume:135 ; year:1999 ; month:01 ; pages:1-24 ; extent:24 |
Links: |
---|
Katalog-ID: |
NLEJ202319032 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ202319032 | ||
003 | DE-627 | ||
005 | 20210706095238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070527s1999 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ202319032 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Intermittency and regularized Fredholm determinants |
264 | 1 | |c 1999 | |
300 | |a 24 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Rugh, Hans Henrik |4 oth | |
773 | 0 | 8 | |i in |t Inventiones mathematicae |d 1966 |g 135(1999) vom: Jan., Seite 1-24 |w (DE-627)NLEJ188991883 |w (DE-600)1398341-6 |x 1432-1297 |7 nnns |
773 | 1 | 8 | |g volume:135 |g year:1999 |g month:01 |g pages:1-24 |g extent:24 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s002220050277 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 135 |j 1999 |c 1 |h 1-24 |g 24 |
matchkey_str |
article:14321297:1999----::nemtecadeuaiefeh |
---|---|
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
(DE-627)NLEJ202319032 DE-627 ger DE-627 rakwb eng Intermittency and regularized Fredholm determinants 1999 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Springer Online Journal Archives 1860-2002 Rugh, Hans Henrik oth in Inventiones mathematicae 1966 135(1999) vom: Jan., Seite 1-24 (DE-627)NLEJ188991883 (DE-600)1398341-6 1432-1297 nnns volume:135 year:1999 month:01 pages:1-24 extent:24 http://dx.doi.org/10.1007/s002220050277 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 135 1999 1 1-24 24 |
spelling |
(DE-627)NLEJ202319032 DE-627 ger DE-627 rakwb eng Intermittency and regularized Fredholm determinants 1999 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Springer Online Journal Archives 1860-2002 Rugh, Hans Henrik oth in Inventiones mathematicae 1966 135(1999) vom: Jan., Seite 1-24 (DE-627)NLEJ188991883 (DE-600)1398341-6 1432-1297 nnns volume:135 year:1999 month:01 pages:1-24 extent:24 http://dx.doi.org/10.1007/s002220050277 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 135 1999 1 1-24 24 |
allfields_unstemmed |
(DE-627)NLEJ202319032 DE-627 ger DE-627 rakwb eng Intermittency and regularized Fredholm determinants 1999 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Springer Online Journal Archives 1860-2002 Rugh, Hans Henrik oth in Inventiones mathematicae 1966 135(1999) vom: Jan., Seite 1-24 (DE-627)NLEJ188991883 (DE-600)1398341-6 1432-1297 nnns volume:135 year:1999 month:01 pages:1-24 extent:24 http://dx.doi.org/10.1007/s002220050277 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 135 1999 1 1-24 24 |
allfieldsGer |
(DE-627)NLEJ202319032 DE-627 ger DE-627 rakwb eng Intermittency and regularized Fredholm determinants 1999 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Springer Online Journal Archives 1860-2002 Rugh, Hans Henrik oth in Inventiones mathematicae 1966 135(1999) vom: Jan., Seite 1-24 (DE-627)NLEJ188991883 (DE-600)1398341-6 1432-1297 nnns volume:135 year:1999 month:01 pages:1-24 extent:24 http://dx.doi.org/10.1007/s002220050277 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 135 1999 1 1-24 24 |
allfieldsSound |
(DE-627)NLEJ202319032 DE-627 ger DE-627 rakwb eng Intermittency and regularized Fredholm determinants 1999 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Springer Online Journal Archives 1860-2002 Rugh, Hans Henrik oth in Inventiones mathematicae 1966 135(1999) vom: Jan., Seite 1-24 (DE-627)NLEJ188991883 (DE-600)1398341-6 1432-1297 nnns volume:135 year:1999 month:01 pages:1-24 extent:24 http://dx.doi.org/10.1007/s002220050277 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 135 1999 1 1-24 24 |
language |
English |
source |
in Inventiones mathematicae 135(1999) vom: Jan., Seite 1-24 volume:135 year:1999 month:01 pages:1-24 extent:24 |
sourceStr |
in Inventiones mathematicae 135(1999) vom: Jan., Seite 1-24 volume:135 year:1999 month:01 pages:1-24 extent:24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Rugh, Hans Henrik @@oth@@ |
publishDateDaySort_date |
1999-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188991883 |
id |
NLEJ202319032 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202319032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706095238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202319032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intermittency and regularized Fredholm determinants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">1966</subfield><subfield code="g">135(1999) vom: Jan., Seite 1-24</subfield><subfield code="w">(DE-627)NLEJ188991883</subfield><subfield code="w">(DE-600)1398341-6</subfield><subfield code="x">1432-1297</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:1999</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-24</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s002220050277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">1999</subfield><subfield code="c">1</subfield><subfield code="h">1-24</subfield><subfield code="g">24</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188991883 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1297 |
topic_title |
Intermittency and regularized Fredholm determinants |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h r hh hhr |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
NLEJ188991883 |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188991883 (DE-600)1398341-6 |
title |
Intermittency and regularized Fredholm determinants |
spellingShingle |
Intermittency and regularized Fredholm determinants |
ctrlnum |
(DE-627)NLEJ202319032 |
title_full |
Intermittency and regularized Fredholm determinants |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
container_volume |
135 |
physical |
24 |
format_se |
Elektronische Aufsätze |
title_sort |
intermittency and regularized fredholm determinants |
title_auth |
Intermittency and regularized Fredholm determinants |
abstract |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. |
abstractGer |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. |
abstract_unstemmed |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Intermittency and regularized Fredholm determinants |
url |
http://dx.doi.org/10.1007/s002220050277 |
remote_bool |
true |
author2 |
Rugh, Hans Henrik |
author2Str |
Rugh, Hans Henrik |
ppnlink |
NLEJ188991883 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T07:34:32.813Z |
_version_ |
1803814198643261440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202319032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706095238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070527s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202319032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intermittency and regularized Fredholm determinants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment σ c =[0,1] and a point spectrum σ p which has no points of accumulation outside 0 and 1. Furthermore, points in σ p −{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−σ c and can be analytically continued from each side of σ c to an open neighborhood of σ c −{0,1} (on different Riemann sheets). In ℂ−σ c the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">1966</subfield><subfield code="g">135(1999) vom: Jan., Seite 1-24</subfield><subfield code="w">(DE-627)NLEJ188991883</subfield><subfield code="w">(DE-600)1398341-6</subfield><subfield code="x">1432-1297</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:1999</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-24</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s002220050277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">1999</subfield><subfield code="c">1</subfield><subfield code="h">1-24</subfield><subfield code="g">24</subfield></datafield></record></collection>
|
score |
7.3996277 |