σ-kompakte Räume
Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice.
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Deutsch |
Erschienen: |
1982 |
---|
Umfang: |
5 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Manuscripta mathematica - 1969, 38(1982) vom: März, Seite 375-379 |
Übergeordnetes Werk: |
volume:38 ; year:1982 ; month:03 ; pages:375-379 ; extent:5 |
Links: |
---|
Katalog-ID: |
NLEJ202494292 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ202494292 | ||
003 | DE-627 | ||
005 | 20210706101858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070528s1982 xx |||||o 00| ||ger c | ||
035 | |a (DE-627)NLEJ202494292 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a ger | ||
245 | 1 | 0 | |a σ-kompakte Räume |
264 | 1 | |c 1982 | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Brunner, Norbert |4 oth | |
773 | 0 | 8 | |i in |t Manuscripta mathematica |d 1969 |g 38(1982) vom: März, Seite 375-379 |w (DE-627)NLEJ188989692 |w (DE-600)1459409-2 |x 1432-1785 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:1982 |g month:03 |g pages:375-379 |g extent:5 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01170932 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 38 |j 1982 |c 3 |h 375-379 |g 5 |
matchkey_str |
article:14321785:1982----::opke |
---|---|
hierarchy_sort_str |
1982 |
publishDate |
1982 |
allfields |
(DE-627)NLEJ202494292 DE-627 ger DE-627 rakwb ger σ-kompakte Räume 1982 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Manuscripta mathematica 1969 38(1982) vom: März, Seite 375-379 (DE-627)NLEJ188989692 (DE-600)1459409-2 1432-1785 nnns volume:38 year:1982 month:03 pages:375-379 extent:5 http://dx.doi.org/10.1007/BF01170932 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 38 1982 3 375-379 5 |
spelling |
(DE-627)NLEJ202494292 DE-627 ger DE-627 rakwb ger σ-kompakte Räume 1982 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Manuscripta mathematica 1969 38(1982) vom: März, Seite 375-379 (DE-627)NLEJ188989692 (DE-600)1459409-2 1432-1785 nnns volume:38 year:1982 month:03 pages:375-379 extent:5 http://dx.doi.org/10.1007/BF01170932 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 38 1982 3 375-379 5 |
allfields_unstemmed |
(DE-627)NLEJ202494292 DE-627 ger DE-627 rakwb ger σ-kompakte Räume 1982 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Manuscripta mathematica 1969 38(1982) vom: März, Seite 375-379 (DE-627)NLEJ188989692 (DE-600)1459409-2 1432-1785 nnns volume:38 year:1982 month:03 pages:375-379 extent:5 http://dx.doi.org/10.1007/BF01170932 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 38 1982 3 375-379 5 |
allfieldsGer |
(DE-627)NLEJ202494292 DE-627 ger DE-627 rakwb ger σ-kompakte Räume 1982 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Manuscripta mathematica 1969 38(1982) vom: März, Seite 375-379 (DE-627)NLEJ188989692 (DE-600)1459409-2 1432-1785 nnns volume:38 year:1982 month:03 pages:375-379 extent:5 http://dx.doi.org/10.1007/BF01170932 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 38 1982 3 375-379 5 |
allfieldsSound |
(DE-627)NLEJ202494292 DE-627 ger DE-627 rakwb ger σ-kompakte Räume 1982 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. Springer Online Journal Archives 1860-2002 Brunner, Norbert oth in Manuscripta mathematica 1969 38(1982) vom: März, Seite 375-379 (DE-627)NLEJ188989692 (DE-600)1459409-2 1432-1785 nnns volume:38 year:1982 month:03 pages:375-379 extent:5 http://dx.doi.org/10.1007/BF01170932 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 38 1982 3 375-379 5 |
language |
German |
source |
in Manuscripta mathematica 38(1982) vom: März, Seite 375-379 volume:38 year:1982 month:03 pages:375-379 extent:5 |
sourceStr |
in Manuscripta mathematica 38(1982) vom: März, Seite 375-379 volume:38 year:1982 month:03 pages:375-379 extent:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Manuscripta mathematica |
authorswithroles_txt_mv |
Brunner, Norbert @@oth@@ |
publishDateDaySort_date |
1982-03-01T00:00:00Z |
hierarchy_top_id |
NLEJ188989692 |
id |
NLEJ202494292 |
language_de |
deutsch |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202494292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706101858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1982 xx |||||o 00| ||ger c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202494292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">σ-kompakte Räume</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunner, Norbert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Manuscripta mathematica</subfield><subfield code="d">1969</subfield><subfield code="g">38(1982) vom: März, Seite 375-379</subfield><subfield code="w">(DE-627)NLEJ188989692</subfield><subfield code="w">(DE-600)1459409-2</subfield><subfield code="x">1432-1785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1982</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:375-379</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01170932</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1982</subfield><subfield code="c">3</subfield><subfield code="h">375-379</subfield><subfield code="g">5</subfield></datafield></record></collection>
|
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ202494292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706101858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1982 xx |||||o 00| ||ger c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ202494292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">σ-kompakte Räume</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunner, Norbert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Manuscripta mathematica</subfield><subfield code="d">1969</subfield><subfield code="g">38(1982) vom: März, Seite 375-379</subfield><subfield code="w">(DE-627)NLEJ188989692</subfield><subfield code="w">(DE-600)1459409-2</subfield><subfield code="x">1432-1785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1982</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:375-379</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01170932</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1982</subfield><subfield code="c">3</subfield><subfield code="h">375-379</subfield><subfield code="g">5</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188989692 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1785 |
topic_title |
σ-kompakte Räume |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n b nb |
hierarchy_parent_title |
Manuscripta mathematica |
hierarchy_parent_id |
NLEJ188989692 |
hierarchy_top_title |
Manuscripta mathematica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188989692 (DE-600)1459409-2 |
title |
σ-kompakte Räume |
spellingShingle |
σ-kompakte Räume |
ctrlnum |
(DE-627)NLEJ202494292 |
title_full |
σ-kompakte Räume |
journal |
Manuscripta mathematica |
journalStr |
Manuscripta mathematica |
lang_code |
ger |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1982 |
contenttype_str_mv |
zzz |
container_start_page |
375 |
container_volume |
38 |
physical |
5 |
format_se |
Elektronische Aufsätze |
title_sort |
σ-kompakte räume |
title_auth |
σ-kompakte Räume |
abstract |
Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. |
abstractGer |
Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. |
abstract_unstemmed |
Abstract The theorem, that σ-compact spaces are Lindelöf, is equivalent to the countable axiom of choice. Variants of this theorem are compared with weak versions of the axiom of choice. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
σ-kompakte Räume |
url |
http://dx.doi.org/10.1007/BF01170932 |
remote_bool |
true |
author2 |
Brunner, Norbert |
author2Str |
Brunner, Norbert |
ppnlink |
NLEJ188989692 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T08:04:34.066Z |
_version_ |
1803816087391830016 |
score |
7.4022713 |