Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan
Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-respo...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Umfang: |
13 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Planta - 1925, 207(1998) vom: Jan., Seite 133-145 |
Übergeordnetes Werk: |
volume:207 ; year:1998 ; month:01 ; pages:133-145 ; extent:13 |
Links: |
---|
Katalog-ID: |
NLEJ204762979 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ204762979 | ||
003 | DE-627 | ||
005 | 20210706161518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070528s1998 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ204762979 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
264 | 1 | |c 1998 | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Munnik, Teun |4 oth | |
700 | 1 | |a van Himbergen, John A. J. |4 oth | |
700 | 1 | |a ter Riet, Bas |4 oth | |
700 | 1 | |a Braun, Franz-Josef |4 oth | |
700 | 1 | |a Irvine, Robin F. |4 oth | |
700 | 1 | |a van den Ende, Herman |4 oth | |
700 | 1 | |a Musgrave, Alan |4 oth | |
773 | 0 | 8 | |i in |t Planta |d 1925 |g 207(1998) vom: Jan., Seite 133-145 |w (DE-627)NLEJ188985018 |w (DE-600)1463030-8 |x 1432-2048 |7 nnns |
773 | 1 | 8 | |g volume:207 |g year:1998 |g month:01 |g pages:133-145 |g extent:13 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s004250050465 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 207 |j 1998 |c 1 |h 133-145 |g 13 |
matchkey_str |
article:14322048:1998----::ealdnlssfhtroeoplpoponstdsnpopaiiaiuoatvtoopopoiaecndnhayooaclsraew |
---|---|
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
(DE-627)NLEJ204762979 DE-627 ger DE-627 rakwb eng Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan 1998 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. Springer Online Journal Archives 1860-2002 Munnik, Teun oth van Himbergen, John A. J. oth ter Riet, Bas oth Braun, Franz-Josef oth Irvine, Robin F. oth van den Ende, Herman oth Musgrave, Alan oth in Planta 1925 207(1998) vom: Jan., Seite 133-145 (DE-627)NLEJ188985018 (DE-600)1463030-8 1432-2048 nnns volume:207 year:1998 month:01 pages:133-145 extent:13 http://dx.doi.org/10.1007/s004250050465 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 207 1998 1 133-145 13 |
spelling |
(DE-627)NLEJ204762979 DE-627 ger DE-627 rakwb eng Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan 1998 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. Springer Online Journal Archives 1860-2002 Munnik, Teun oth van Himbergen, John A. J. oth ter Riet, Bas oth Braun, Franz-Josef oth Irvine, Robin F. oth van den Ende, Herman oth Musgrave, Alan oth in Planta 1925 207(1998) vom: Jan., Seite 133-145 (DE-627)NLEJ188985018 (DE-600)1463030-8 1432-2048 nnns volume:207 year:1998 month:01 pages:133-145 extent:13 http://dx.doi.org/10.1007/s004250050465 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 207 1998 1 133-145 13 |
allfields_unstemmed |
(DE-627)NLEJ204762979 DE-627 ger DE-627 rakwb eng Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan 1998 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. Springer Online Journal Archives 1860-2002 Munnik, Teun oth van Himbergen, John A. J. oth ter Riet, Bas oth Braun, Franz-Josef oth Irvine, Robin F. oth van den Ende, Herman oth Musgrave, Alan oth in Planta 1925 207(1998) vom: Jan., Seite 133-145 (DE-627)NLEJ188985018 (DE-600)1463030-8 1432-2048 nnns volume:207 year:1998 month:01 pages:133-145 extent:13 http://dx.doi.org/10.1007/s004250050465 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 207 1998 1 133-145 13 |
allfieldsGer |
(DE-627)NLEJ204762979 DE-627 ger DE-627 rakwb eng Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan 1998 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. Springer Online Journal Archives 1860-2002 Munnik, Teun oth van Himbergen, John A. J. oth ter Riet, Bas oth Braun, Franz-Josef oth Irvine, Robin F. oth van den Ende, Herman oth Musgrave, Alan oth in Planta 1925 207(1998) vom: Jan., Seite 133-145 (DE-627)NLEJ188985018 (DE-600)1463030-8 1432-2048 nnns volume:207 year:1998 month:01 pages:133-145 extent:13 http://dx.doi.org/10.1007/s004250050465 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 207 1998 1 133-145 13 |
allfieldsSound |
(DE-627)NLEJ204762979 DE-627 ger DE-627 rakwb eng Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan 1998 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. Springer Online Journal Archives 1860-2002 Munnik, Teun oth van Himbergen, John A. J. oth ter Riet, Bas oth Braun, Franz-Josef oth Irvine, Robin F. oth van den Ende, Herman oth Musgrave, Alan oth in Planta 1925 207(1998) vom: Jan., Seite 133-145 (DE-627)NLEJ188985018 (DE-600)1463030-8 1432-2048 nnns volume:207 year:1998 month:01 pages:133-145 extent:13 http://dx.doi.org/10.1007/s004250050465 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 207 1998 1 133-145 13 |
language |
English |
source |
in Planta 207(1998) vom: Jan., Seite 133-145 volume:207 year:1998 month:01 pages:133-145 extent:13 |
sourceStr |
in Planta 207(1998) vom: Jan., Seite 133-145 volume:207 year:1998 month:01 pages:133-145 extent:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Planta |
authorswithroles_txt_mv |
Munnik, Teun @@oth@@ van Himbergen, John A. J. @@oth@@ ter Riet, Bas @@oth@@ Braun, Franz-Josef @@oth@@ Irvine, Robin F. @@oth@@ van den Ende, Herman @@oth@@ Musgrave, Alan @@oth@@ |
publishDateDaySort_date |
1998-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ188985018 |
id |
NLEJ204762979 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ204762979</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706161518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1998 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ204762979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munnik, Teun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Himbergen, John A. J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ter Riet, Bas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Braun, Franz-Josef</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Irvine, Robin F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Ende, Herman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musgrave, Alan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Planta</subfield><subfield code="d">1925</subfield><subfield code="g">207(1998) vom: Jan., Seite 133-145</subfield><subfield code="w">(DE-627)NLEJ188985018</subfield><subfield code="w">(DE-600)1463030-8</subfield><subfield code="x">1432-2048</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield><subfield code="g">year:1998</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:133-145</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s004250050465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield><subfield code="j">1998</subfield><subfield code="c">1</subfield><subfield code="h">133-145</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188985018 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-2048 |
topic_title |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t m tm h j a j v hjaj hjajv r b t rb rbt f j b fjb r f i rf rfi d e h v deh dehv a m am |
hierarchy_parent_title |
Planta |
hierarchy_parent_id |
NLEJ188985018 |
hierarchy_top_title |
Planta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188985018 (DE-600)1463030-8 |
title |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
spellingShingle |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
ctrlnum |
(DE-627)NLEJ204762979 |
title_full |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
journal |
Planta |
journalStr |
Planta |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
zzz |
container_start_page |
133 |
container_volume |
207 |
physical |
13 |
format_se |
Elektronische Aufsätze |
title_sort |
detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases c and d in chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
title_auth |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
abstract |
Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. |
abstractGer |
Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. |
abstract_unstemmed |
Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan |
url |
http://dx.doi.org/10.1007/s004250050465 |
remote_bool |
true |
author2 |
Munnik, Teun van Himbergen, John A. J. ter Riet, Bas Braun, Franz-Josef Irvine, Robin F. van den Ende, Herman Musgrave, Alan |
author2Str |
Munnik, Teun van Himbergen, John A. J. ter Riet, Bas Braun, Franz-Josef Irvine, Robin F. van den Ende, Herman Musgrave, Alan |
ppnlink |
NLEJ188985018 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
up_date |
2024-07-06T01:48:42.118Z |
_version_ |
1803792439960403968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ204762979</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706161518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1998 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ204762979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munnik, Teun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Himbergen, John A. J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ter Riet, Bas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Braun, Franz-Josef</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Irvine, Robin F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Ende, Herman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musgrave, Alan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Planta</subfield><subfield code="d">1925</subfield><subfield code="g">207(1998) vom: Jan., Seite 133-145</subfield><subfield code="w">(DE-627)NLEJ188985018</subfield><subfield code="w">(DE-600)1463030-8</subfield><subfield code="x">1432-2048</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield><subfield code="g">year:1998</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:133-145</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/s004250050465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield><subfield code="j">1998</subfield><subfield code="c">1</subfield><subfield code="h">133-145</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
score |
7.401662 |