A unified framework for primal-dual methods in minimum cost network flow problems
Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by mea...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1985 |
---|
Umfang: |
21 |
---|
Reproduktion: |
Springer Online Journal Archives 1860-2002 |
---|---|
Übergeordnetes Werk: |
in: Mathematical programming - 1971, 32(1985) vom: Feb., Seite 125-145 |
Übergeordnetes Werk: |
volume:32 ; year:1985 ; month:02 ; pages:125-145 ; extent:21 |
Links: |
---|
Katalog-ID: |
NLEJ206321813 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ206321813 | ||
003 | DE-627 | ||
005 | 20210706200230.0 | ||
007 | cr uuu---uuuuu | ||
008 | 070528s1985 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)NLEJ206321813 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
245 | 1 | 0 | |a A unified framework for primal-dual methods in minimum cost network flow problems |
264 | 1 | |c 1985 | |
300 | |a 21 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. | ||
533 | |f Springer Online Journal Archives 1860-2002 | ||
700 | 1 | |a Bertsekas, Dimitri P. |4 oth | |
773 | 0 | 8 | |i in |t Mathematical programming |d 1971 |g 32(1985) vom: Feb., Seite 125-145 |w (DE-627)NLEJ188994955 |w (DE-600)1463397-8 |x 1436-4646 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:1985 |g month:02 |g pages:125-145 |g extent:21 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/BF01586087 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SOJ | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 32 |j 1985 |c 2 |h 125-145 |g 21 |
matchkey_str |
article:14364646:1985----::uiidrmwrfrrmlulehdimnmmot |
---|---|
hierarchy_sort_str |
1985 |
publishDate |
1985 |
allfields |
(DE-627)NLEJ206321813 DE-627 ger DE-627 rakwb eng A unified framework for primal-dual methods in minimum cost network flow problems 1985 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. Springer Online Journal Archives 1860-2002 Bertsekas, Dimitri P. oth in Mathematical programming 1971 32(1985) vom: Feb., Seite 125-145 (DE-627)NLEJ188994955 (DE-600)1463397-8 1436-4646 nnns volume:32 year:1985 month:02 pages:125-145 extent:21 http://dx.doi.org/10.1007/BF01586087 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 32 1985 2 125-145 21 |
spelling |
(DE-627)NLEJ206321813 DE-627 ger DE-627 rakwb eng A unified framework for primal-dual methods in minimum cost network flow problems 1985 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. Springer Online Journal Archives 1860-2002 Bertsekas, Dimitri P. oth in Mathematical programming 1971 32(1985) vom: Feb., Seite 125-145 (DE-627)NLEJ188994955 (DE-600)1463397-8 1436-4646 nnns volume:32 year:1985 month:02 pages:125-145 extent:21 http://dx.doi.org/10.1007/BF01586087 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 32 1985 2 125-145 21 |
allfields_unstemmed |
(DE-627)NLEJ206321813 DE-627 ger DE-627 rakwb eng A unified framework for primal-dual methods in minimum cost network flow problems 1985 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. Springer Online Journal Archives 1860-2002 Bertsekas, Dimitri P. oth in Mathematical programming 1971 32(1985) vom: Feb., Seite 125-145 (DE-627)NLEJ188994955 (DE-600)1463397-8 1436-4646 nnns volume:32 year:1985 month:02 pages:125-145 extent:21 http://dx.doi.org/10.1007/BF01586087 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 32 1985 2 125-145 21 |
allfieldsGer |
(DE-627)NLEJ206321813 DE-627 ger DE-627 rakwb eng A unified framework for primal-dual methods in minimum cost network flow problems 1985 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. Springer Online Journal Archives 1860-2002 Bertsekas, Dimitri P. oth in Mathematical programming 1971 32(1985) vom: Feb., Seite 125-145 (DE-627)NLEJ188994955 (DE-600)1463397-8 1436-4646 nnns volume:32 year:1985 month:02 pages:125-145 extent:21 http://dx.doi.org/10.1007/BF01586087 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 32 1985 2 125-145 21 |
allfieldsSound |
(DE-627)NLEJ206321813 DE-627 ger DE-627 rakwb eng A unified framework for primal-dual methods in minimum cost network flow problems 1985 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. Springer Online Journal Archives 1860-2002 Bertsekas, Dimitri P. oth in Mathematical programming 1971 32(1985) vom: Feb., Seite 125-145 (DE-627)NLEJ188994955 (DE-600)1463397-8 1436-4646 nnns volume:32 year:1985 month:02 pages:125-145 extent:21 http://dx.doi.org/10.1007/BF01586087 GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE AR 32 1985 2 125-145 21 |
language |
English |
source |
in Mathematical programming 32(1985) vom: Feb., Seite 125-145 volume:32 year:1985 month:02 pages:125-145 extent:21 |
sourceStr |
in Mathematical programming 32(1985) vom: Feb., Seite 125-145 volume:32 year:1985 month:02 pages:125-145 extent:21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Mathematical programming |
authorswithroles_txt_mv |
Bertsekas, Dimitri P. @@oth@@ |
publishDateDaySort_date |
1985-02-01T00:00:00Z |
hierarchy_top_id |
NLEJ188994955 |
id |
NLEJ206321813 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ206321813</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706200230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1985 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ206321813</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A unified framework for primal-dual methods in minimum cost network flow problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertsekas, Dimitri P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Mathematical programming</subfield><subfield code="d">1971</subfield><subfield code="g">32(1985) vom: Feb., Seite 125-145</subfield><subfield code="w">(DE-627)NLEJ188994955</subfield><subfield code="w">(DE-600)1463397-8</subfield><subfield code="x">1436-4646</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:1985</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:125-145</subfield><subfield code="g">extent:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01586087</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">1985</subfield><subfield code="c">2</subfield><subfield code="h">125-145</subfield><subfield code="g">21</subfield></datafield></record></collection>
|
series2 |
Springer Online Journal Archives 1860-2002 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ188994955 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1436-4646 |
topic_title |
A unified framework for primal-dual methods in minimum cost network flow problems |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d p b dp dpb |
hierarchy_parent_title |
Mathematical programming |
hierarchy_parent_id |
NLEJ188994955 |
hierarchy_top_title |
Mathematical programming |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ188994955 (DE-600)1463397-8 |
title |
A unified framework for primal-dual methods in minimum cost network flow problems |
spellingShingle |
A unified framework for primal-dual methods in minimum cost network flow problems |
ctrlnum |
(DE-627)NLEJ206321813 |
title_full |
A unified framework for primal-dual methods in minimum cost network flow problems |
journal |
Mathematical programming |
journalStr |
Mathematical programming |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1985 |
contenttype_str_mv |
zzz |
container_start_page |
125 |
container_volume |
32 |
physical |
21 |
format_se |
Elektronische Aufsätze |
title_sort |
a unified framework for primal-dual methods in minimum cost network flow problems |
title_auth |
A unified framework for primal-dual methods in minimum cost network flow problems |
abstract |
Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. |
abstractGer |
Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. |
abstract_unstemmed |
Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems. |
collection_details |
GBV_USEFLAG_U ZDB-1-SOJ GBV_NL_ARTICLE |
title_short |
A unified framework for primal-dual methods in minimum cost network flow problems |
url |
http://dx.doi.org/10.1007/BF01586087 |
remote_bool |
true |
author2 |
Bertsekas, Dimitri P. |
author2Str |
Bertsekas, Dimitri P. |
ppnlink |
NLEJ188994955 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-06T06:48:47.341Z |
_version_ |
1803811319806164992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ206321813</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210706200230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">070528s1985 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ206321813</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A unified framework for primal-dual methods in minimum cost network flow problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated network. The algorithms are of the primal-dual type. They maintain primal feasibility with respect to capacity constraints, while trying to satisfy the conservation of flow equation at each node by means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent of a dual functional. The manner in which these procedures are combined is flexible thereby allowing the construction of algorithms that can be tailored to the problem at hand for maximum effectiveness. Particular attention is given to methods that incorporate features from classical relaxation procedures. Experimental codes based on these methods outperform by a substantial margin the fastest available primal-dual and primal simplex codes on standard benchmark problems.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Springer Online Journal Archives 1860-2002</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertsekas, Dimitri P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">in</subfield><subfield code="t">Mathematical programming</subfield><subfield code="d">1971</subfield><subfield code="g">32(1985) vom: Feb., Seite 125-145</subfield><subfield code="w">(DE-627)NLEJ188994955</subfield><subfield code="w">(DE-600)1463397-8</subfield><subfield code="x">1436-4646</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:1985</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:125-145</subfield><subfield code="g">extent:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1007/BF01586087</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SOJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">1985</subfield><subfield code="c">2</subfield><subfield code="h">125-145</subfield><subfield code="g">21</subfield></datafield></record></collection>
|
score |
7.400923 |