HEMT noise neural model based on bias conditions
Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues'...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Reproduktion: |
Emerald Fulltext Archive Database 1994-2005 |
---|---|
Übergeordnetes Werk: |
In: Compel - Bradford : Emerald, 1982, 23(2004), 2, Seite 426-435 |
Übergeordnetes Werk: |
volume:23 ; year:2004 ; number:2 ; pages:426-435 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1108/03321640410510587 |
---|
Katalog-ID: |
NLEJ219835012 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ219835012 | ||
003 | DE-627 | ||
005 | 20210707093835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 090811s2004 xxk|||||o 00| ||eng c | ||
024 | 7 | |a 10.1108/03321640410510587 |2 doi | |
035 | |a (DE-627)NLEJ219835012 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
044 | |c XA-GB | ||
245 | 1 | 0 | |a HEMT noise neural model based on bias conditions |
264 | 1 | |c 2004 | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. | ||
533 | |f Emerald Fulltext Archive Database 1994-2005 | ||
650 | 4 | |a Microwave transistors | |
650 | 4 | |a Microwaves | |
650 | 4 | |a Neural net devices | |
650 | 4 | |a Neural nets | |
650 | 4 | |a Noise | |
700 | 1 | |a Markovic, Vera |4 oth | |
700 | 1 | |a Marinkovic, Zlatica |4 oth | |
773 | 0 | 8 | |i In |t Compel |d Bradford : Emerald, 1982 |g 23(2004), 2, Seite 426-435 |h Online-Ressource |w (DE-627)NLEJ219579113 |w (DE-600)1501321-2 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2004 |g number:2 |g pages:426-435 |g extent:10 |
856 | 4 | 0 | |u http://dx.doi.org/10.1108/03321640410510587 |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-EFD | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 23 |j 2004 |e 2 |h 426-435 |g 10 |
matchkey_str |
markovicveramarinkoviczlatica:2004----:etosnuamdlaeoba |
---|---|
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1108/03321640410510587 doi (DE-627)NLEJ219835012 DE-627 ger DE-627 rakwb eng XA-GB HEMT noise neural model based on bias conditions 2004 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. Emerald Fulltext Archive Database 1994-2005 Microwave transistors Microwaves Neural net devices Neural nets Noise Markovic, Vera oth Marinkovic, Zlatica oth In Compel Bradford : Emerald, 1982 23(2004), 2, Seite 426-435 Online-Ressource (DE-627)NLEJ219579113 (DE-600)1501321-2 nnns volume:23 year:2004 number:2 pages:426-435 extent:10 http://dx.doi.org/10.1108/03321640410510587 GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE AR 23 2004 2 426-435 10 |
spelling |
10.1108/03321640410510587 doi (DE-627)NLEJ219835012 DE-627 ger DE-627 rakwb eng XA-GB HEMT noise neural model based on bias conditions 2004 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. Emerald Fulltext Archive Database 1994-2005 Microwave transistors Microwaves Neural net devices Neural nets Noise Markovic, Vera oth Marinkovic, Zlatica oth In Compel Bradford : Emerald, 1982 23(2004), 2, Seite 426-435 Online-Ressource (DE-627)NLEJ219579113 (DE-600)1501321-2 nnns volume:23 year:2004 number:2 pages:426-435 extent:10 http://dx.doi.org/10.1108/03321640410510587 GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE AR 23 2004 2 426-435 10 |
allfields_unstemmed |
10.1108/03321640410510587 doi (DE-627)NLEJ219835012 DE-627 ger DE-627 rakwb eng XA-GB HEMT noise neural model based on bias conditions 2004 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. Emerald Fulltext Archive Database 1994-2005 Microwave transistors Microwaves Neural net devices Neural nets Noise Markovic, Vera oth Marinkovic, Zlatica oth In Compel Bradford : Emerald, 1982 23(2004), 2, Seite 426-435 Online-Ressource (DE-627)NLEJ219579113 (DE-600)1501321-2 nnns volume:23 year:2004 number:2 pages:426-435 extent:10 http://dx.doi.org/10.1108/03321640410510587 GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE AR 23 2004 2 426-435 10 |
allfieldsGer |
10.1108/03321640410510587 doi (DE-627)NLEJ219835012 DE-627 ger DE-627 rakwb eng XA-GB HEMT noise neural model based on bias conditions 2004 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. Emerald Fulltext Archive Database 1994-2005 Microwave transistors Microwaves Neural net devices Neural nets Noise Markovic, Vera oth Marinkovic, Zlatica oth In Compel Bradford : Emerald, 1982 23(2004), 2, Seite 426-435 Online-Ressource (DE-627)NLEJ219579113 (DE-600)1501321-2 nnns volume:23 year:2004 number:2 pages:426-435 extent:10 http://dx.doi.org/10.1108/03321640410510587 GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE AR 23 2004 2 426-435 10 |
allfieldsSound |
10.1108/03321640410510587 doi (DE-627)NLEJ219835012 DE-627 ger DE-627 rakwb eng XA-GB HEMT noise neural model based on bias conditions 2004 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. Emerald Fulltext Archive Database 1994-2005 Microwave transistors Microwaves Neural net devices Neural nets Noise Markovic, Vera oth Marinkovic, Zlatica oth In Compel Bradford : Emerald, 1982 23(2004), 2, Seite 426-435 Online-Ressource (DE-627)NLEJ219579113 (DE-600)1501321-2 nnns volume:23 year:2004 number:2 pages:426-435 extent:10 http://dx.doi.org/10.1108/03321640410510587 GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE AR 23 2004 2 426-435 10 |
language |
English |
source |
In Compel 23(2004), 2, Seite 426-435 volume:23 year:2004 number:2 pages:426-435 extent:10 |
sourceStr |
In Compel 23(2004), 2, Seite 426-435 volume:23 year:2004 number:2 pages:426-435 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microwave transistors Microwaves Neural net devices Neural nets Noise |
isfreeaccess_bool |
false |
container_title |
Compel |
authorswithroles_txt_mv |
Markovic, Vera @@oth@@ Marinkovic, Zlatica @@oth@@ |
publishDateDaySort_date |
2004-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ219579113 |
id |
NLEJ219835012 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ219835012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707093835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">090811s2004 xxk|||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1108/03321640410510587</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ219835012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="c">XA-GB</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">HEMT noise neural model based on bias conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Emerald Fulltext Archive Database 1994-2005</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwaves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural net devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural nets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markovic, Vera</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinkovic, Zlatica</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Compel</subfield><subfield code="d">Bradford : Emerald, 1982</subfield><subfield code="g">23(2004), 2, Seite 426-435</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ219579113</subfield><subfield code="w">(DE-600)1501321-2</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:426-435</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1108/03321640410510587</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-EFD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="h">426-435</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
series2 |
Emerald Fulltext Archive Database 1994-2005 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ219579113 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
HEMT noise neural model based on bias conditions Microwave transistors Microwaves Neural net devices Neural nets Noise |
topic |
misc Microwave transistors misc Microwaves misc Neural net devices misc Neural nets misc Noise |
spellingShingle |
misc Microwave transistors misc Microwaves misc Neural net devices misc Neural nets misc Noise HEMT noise neural model based on bias conditions |
topic_unstemmed |
misc Microwave transistors misc Microwaves misc Neural net devices misc Neural nets misc Noise |
topic_browse |
misc Microwave transistors misc Microwaves misc Neural net devices misc Neural nets misc Noise |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v m vm z m zm |
hierarchy_parent_title |
Compel |
hierarchy_parent_id |
NLEJ219579113 |
hierarchy_top_title |
Compel |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ219579113 (DE-600)1501321-2 |
title |
HEMT noise neural model based on bias conditions |
ctrlnum |
(DE-627)NLEJ219835012 |
title_full |
HEMT noise neural model based on bias conditions |
journal |
Compel |
journalStr |
Compel |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
zzz |
container_start_page |
426 |
container_volume |
23 |
physical |
10 |
format_se |
Elektronische Aufsätze |
countryofpublication_str_mv |
XA-GB |
doi_str_mv |
10.1108/03321640410510587 |
title_sort |
hemt noise neural model based on bias conditions |
title_auth |
HEMT noise neural model based on bias conditions |
abstract |
Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. |
abstractGer |
Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. |
abstract_unstemmed |
Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure. |
collection_details |
GBV_USEFLAG_U ZDB-1-EFD GBV_NL_ARTICLE |
container_issue |
2 |
title_short |
HEMT noise neural model based on bias conditions |
url |
http://dx.doi.org/10.1108/03321640410510587 |
remote_bool |
true |
author2 |
Markovic, Vera Marinkovic, Zlatica |
author2Str |
Markovic, Vera Marinkovic, Zlatica |
ppnlink |
NLEJ219579113 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1108/03321640410510587 |
up_date |
2024-07-06T06:14:33.799Z |
_version_ |
1803809166511308800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ219835012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707093835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">090811s2004 xxk|||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1108/03321640410510587</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ219835012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="c">XA-GB</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">HEMT noise neural model based on bias conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Knowledge of the microwave transistor parameters at various bias conditions is often required in computer-aided design of complex microwave low-noise circuit. Since the measurements of noise parameters are very complex and time-consuming, microwave circuit designers usually use the catalogues' data or noise models. The noise data that can be found in the catalogues are often limited to a few frequencies and to one or few bias points. Further, most of the existing noise models require recalculation of elements/parameters of an equivalent circuit for every bias point. Microwave HEMT transistor noise prediction based on a multilayer perceptron neural network, proposed in this paper, enables noise prediction for all operating points over a wide frequency range. Neural networks are trained to learn noise parameters' dependence on bias conditions and frequency. After network training, noise prediction for a specified bias point requires only a network response calculation without changes in the network structure.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Emerald Fulltext Archive Database 1994-2005</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwaves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural net devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural nets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markovic, Vera</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinkovic, Zlatica</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Compel</subfield><subfield code="d">Bradford : Emerald, 1982</subfield><subfield code="g">23(2004), 2, Seite 426-435</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ219579113</subfield><subfield code="w">(DE-600)1501321-2</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:426-435</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1108/03321640410510587</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-EFD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="h">426-435</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.40149 |