Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering
Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high the...
Ausführliche Beschreibung
Autor*in: |
Zhang, Guo Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
s.l. Stafa-Zurich, Switzerland: 2007 |
---|
Anmerkung: |
https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 |
---|---|
Umfang: |
Online-Ressource (5 pages) |
Reproduktion: |
Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 |
---|---|
Übergeordnetes Werk: |
In: Key engineering materials - Uetikon a.S. : Trans Tech Publications, 1986, Vol. 336-338 (Apr. 2007), p. 1159-1163 |
Übergeordnetes Werk: |
volume:336-338 ; year:2007 ; pages:1159-1163 |
Links: |
---|
DOI / URN: |
10.4028/www.scientific.net/KEM.336-338.1159 |
---|
Katalog-ID: |
NLEJ238232166 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ238232166 | ||
003 | DE-627 | ||
005 | 20210707055131.0 | ||
007 | cr uuu---uuuuu | ||
008 | 120216s2007 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4028/www.scientific.net/KEM.336-338.1159 |2 doi | |
035 | |a (DE-627)NLEJ238232166 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Guo Jun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
264 | 1 | |a s.l. |a Stafa-Zurich, Switzerland |c 2007 | |
300 | |a Online-Ressource (5 pages) | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
500 | |a https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 | ||
520 | |a Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures | ||
533 | |f Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 | ||
700 | 1 | |a Wu, Wen Wen |4 oth | |
700 | 1 | |a Kan, Yan Mei |4 oth | |
700 | 1 | |a Wang, Pei Ling |4 oth | |
773 | 0 | 8 | |i In |t Key engineering materials |d Uetikon a.S. : Trans Tech Publications, 1986 |g Vol. 336-338 (Apr. 2007), p. 1159-1163 |h Online-Ressource |w (DE-627)NLEJ237794934 |w (DE-600)2073306-9 |x 1013-9826 |7 nnns |
773 | 1 | 8 | |g volume:336-338 |g year:2007 |g pages:1159-1163 |
856 | 4 | 0 | |u https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 |q text/html |z Deutschlandweit zugänglich |3 Volltext |
856 | 4 | 0 | |u https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 |q text/html |z Deutschlandweit zugänglich |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-SNT | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 336-338 |j 2007 |h 1159-1163 |y Vol. 336-338 (Apr. 2007), p. 1159-1163 |
author_variant |
g j z gj gjz |
---|---|
matchkey_str |
article:10139826:2007----::lrhgtmeaueeaishcvae |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.4028/www.scientific.net/KEM.336-338.1159 doi (DE-627)NLEJ238232166 DE-627 ger DE-627 rakwb eng Zhang, Guo Jun verfasserin aut Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering s.l. Stafa-Zurich, Switzerland 2007 Online-Ressource (5 pages) nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 Wu, Wen Wen oth Kan, Yan Mei oth Wang, Pei Ling oth In Key engineering materials Uetikon a.S. : Trans Tech Publications, 1986 Vol. 336-338 (Apr. 2007), p. 1159-1163 Online-Ressource (DE-627)NLEJ237794934 (DE-600)2073306-9 1013-9826 nnns volume:336-338 year:2007 pages:1159-1163 https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE AR 336-338 2007 1159-1163 Vol. 336-338 (Apr. 2007), p. 1159-1163 |
spelling |
10.4028/www.scientific.net/KEM.336-338.1159 doi (DE-627)NLEJ238232166 DE-627 ger DE-627 rakwb eng Zhang, Guo Jun verfasserin aut Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering s.l. Stafa-Zurich, Switzerland 2007 Online-Ressource (5 pages) nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 Wu, Wen Wen oth Kan, Yan Mei oth Wang, Pei Ling oth In Key engineering materials Uetikon a.S. : Trans Tech Publications, 1986 Vol. 336-338 (Apr. 2007), p. 1159-1163 Online-Ressource (DE-627)NLEJ237794934 (DE-600)2073306-9 1013-9826 nnns volume:336-338 year:2007 pages:1159-1163 https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE AR 336-338 2007 1159-1163 Vol. 336-338 (Apr. 2007), p. 1159-1163 |
allfields_unstemmed |
10.4028/www.scientific.net/KEM.336-338.1159 doi (DE-627)NLEJ238232166 DE-627 ger DE-627 rakwb eng Zhang, Guo Jun verfasserin aut Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering s.l. Stafa-Zurich, Switzerland 2007 Online-Ressource (5 pages) nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 Wu, Wen Wen oth Kan, Yan Mei oth Wang, Pei Ling oth In Key engineering materials Uetikon a.S. : Trans Tech Publications, 1986 Vol. 336-338 (Apr. 2007), p. 1159-1163 Online-Ressource (DE-627)NLEJ237794934 (DE-600)2073306-9 1013-9826 nnns volume:336-338 year:2007 pages:1159-1163 https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE AR 336-338 2007 1159-1163 Vol. 336-338 (Apr. 2007), p. 1159-1163 |
allfieldsGer |
10.4028/www.scientific.net/KEM.336-338.1159 doi (DE-627)NLEJ238232166 DE-627 ger DE-627 rakwb eng Zhang, Guo Jun verfasserin aut Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering s.l. Stafa-Zurich, Switzerland 2007 Online-Ressource (5 pages) nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 Wu, Wen Wen oth Kan, Yan Mei oth Wang, Pei Ling oth In Key engineering materials Uetikon a.S. : Trans Tech Publications, 1986 Vol. 336-338 (Apr. 2007), p. 1159-1163 Online-Ressource (DE-627)NLEJ237794934 (DE-600)2073306-9 1013-9826 nnns volume:336-338 year:2007 pages:1159-1163 https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE AR 336-338 2007 1159-1163 Vol. 336-338 (Apr. 2007), p. 1159-1163 |
allfieldsSound |
10.4028/www.scientific.net/KEM.336-338.1159 doi (DE-627)NLEJ238232166 DE-627 ger DE-627 rakwb eng Zhang, Guo Jun verfasserin aut Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering s.l. Stafa-Zurich, Switzerland 2007 Online-Ressource (5 pages) nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 Wu, Wen Wen oth Kan, Yan Mei oth Wang, Pei Ling oth In Key engineering materials Uetikon a.S. : Trans Tech Publications, 1986 Vol. 336-338 (Apr. 2007), p. 1159-1163 Online-Ressource (DE-627)NLEJ237794934 (DE-600)2073306-9 1013-9826 nnns volume:336-338 year:2007 pages:1159-1163 https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 text/html Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE AR 336-338 2007 1159-1163 Vol. 336-338 (Apr. 2007), p. 1159-1163 |
language |
English |
source |
In Key engineering materials Vol. 336-338 (Apr. 2007), p. 1159-1163 volume:336-338 year:2007 pages:1159-1163 |
sourceStr |
In Key engineering materials Vol. 336-338 (Apr. 2007), p. 1159-1163 volume:336-338 year:2007 pages:1159-1163 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Key engineering materials |
authorswithroles_txt_mv |
Zhang, Guo Jun @@aut@@ Wu, Wen Wen @@oth@@ Kan, Yan Mei @@oth@@ Wang, Pei Ling @@oth@@ |
publishDateDaySort_date |
2007-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ237794934 |
id |
NLEJ238232166 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ238232166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707055131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120216s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ238232166</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guo Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">s.l.</subfield><subfield code="a">Stafa-Zurich, Switzerland</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource (5 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wen Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kan, Yan Mei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Pei Ling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Key engineering materials</subfield><subfield code="d">Uetikon a.S. : Trans Tech Publications, 1986</subfield><subfield code="g">Vol. 336-338 (Apr. 2007), p. 1159-1163</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ237794934</subfield><subfield code="w">(DE-600)2073306-9</subfield><subfield code="x">1013-9826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:336-338</subfield><subfield code="g">year:2007</subfield><subfield code="g">pages:1159-1163</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="q">text/html</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="q">text/html</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SNT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">336-338</subfield><subfield code="j">2007</subfield><subfield code="h">1159-1163</subfield><subfield code="y">Vol. 336-338 (Apr. 2007), p. 1159-1163</subfield></datafield></record></collection>
|
series2 |
Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008 |
author |
Zhang, Guo Jun |
spellingShingle |
Zhang, Guo Jun Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
authorStr |
Zhang, Guo Jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ237794934 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
NL |
publishPlace |
s.l. Stafa-Zurich, Switzerland |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1013-9826 |
topic_title |
Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w w w ww www y m k ym ymk p l w pl plw |
hierarchy_parent_title |
Key engineering materials |
hierarchy_parent_id |
NLEJ237794934 |
hierarchy_top_title |
Key engineering materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ237794934 (DE-600)2073306-9 |
title |
Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
ctrlnum |
(DE-627)NLEJ238232166 |
title_full |
Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
author_sort |
Zhang, Guo Jun |
journal |
Key engineering materials |
journalStr |
Key engineering materials |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
zzz |
container_start_page |
1159 |
author_browse |
Zhang, Guo Jun |
container_volume |
336-338 |
physical |
Online-Ressource (5 pages) |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Guo Jun |
doi_str_mv |
10.4028/www.scientific.net/KEM.336-338.1159 |
title_sort |
ultra-high temperature ceramics (uhtcs) via reactive sintering |
title_auth |
Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
abstract |
Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 |
abstractGer |
Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 |
abstract_unstemmed |
Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159 |
collection_details |
GBV_USEFLAG_U ZDB-1-SNT GBV_NL_ARTICLE |
title_short |
Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering |
url |
https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159 https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159 |
remote_bool |
true |
author2 |
Wu, Wen Wen Kan, Yan Mei Wang, Pei Ling |
author2Str |
Wu, Wen Wen Kan, Yan Mei Wang, Pei Ling |
ppnlink |
NLEJ237794934 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.4028/www.scientific.net/KEM.336-338.1159 |
up_date |
2024-07-06T04:24:12.152Z |
_version_ |
1803802223211184128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ238232166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707055131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120216s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ238232166</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guo Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">s.l.</subfield><subfield code="a">Stafa-Zurich, Switzerland</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource (5 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">https://getinfo.de/app/details?id=transtech:doi~10.4028%252Fwww.scientific.net%252FKEM.336-338.1159</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used attemperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahightemperature applications over 1800°C, materials with high melting points, high phase compositionstability, high thermal conductivity, good thermal shock and oxidation resistance are needed. Thetransition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C,and can basically meet the above demands. However, the oxidation resistance of diboride monolithicceramics at ultra-high temperatures need to be improved for the applications in thermal protectionsystems for future aerospace vehicles and jet engines. On the other hand, processing science for makinghigh performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mildtemperatures through reactive sintering is an attracting way due to the chemically stable phasecomposition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, thestability studies of the materials in phase composition and microstructures at ultra high applicationtemperatures is also critical for materials manufactured at relatively low temperature. Furthermore, theoxidation resistance in simulated reentry environments instead of in static or flowing air of ambientpressure should be evaluated. Here we will report the concept, advantages and some recent progress onthe reactive sintering of diboride–based composites at mild temperatures</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wen Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kan, Yan Mei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Pei Ling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Key engineering materials</subfield><subfield code="d">Uetikon a.S. : Trans Tech Publications, 1986</subfield><subfield code="g">Vol. 336-338 (Apr. 2007), p. 1159-1163</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ237794934</subfield><subfield code="w">(DE-600)2073306-9</subfield><subfield code="x">1013-9826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:336-338</subfield><subfield code="g">year:2007</subfield><subfield code="g">pages:1159-1163</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/openurl/search/?pid=doi:10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="q">text/html</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org//10.4028/www.scientific.net/KEM.336-338.1159</subfield><subfield code="q">text/html</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SNT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">336-338</subfield><subfield code="j">2007</subfield><subfield code="h">1159-1163</subfield><subfield code="y">Vol. 336-338 (Apr. 2007), p. 1159-1163</subfield></datafield></record></collection>
|
score |
7.399599 |