Elastic waves scattering and radiation by fractal inhomogeneity of a medium
I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid fo...
Ausführliche Beschreibung
Autor*in: |
Shapiro, S. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Oxford, UK: Blackwell Publishing Ltd ; 1992 |
---|
Schlagwörter: |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
2007 ; Blackwell Publishing Journal Backfiles 1879-2005 |
---|---|
Übergeordnetes Werk: |
In: Geophysical journal international - Oxford . Wiley-Blackwell, 1922, 110(1992), 3, Seite 0 |
Übergeordnetes Werk: |
volume:110 ; year:1992 ; number:3 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1111/j.1365-246X.1992.tb02094.x |
---|
Katalog-ID: |
NLEJ23965384X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ23965384X | ||
003 | DE-627 | ||
005 | 20210707092228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 120426s1992 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1111/j.1365-246X.1992.tb02094.x |2 doi | |
035 | |a (DE-627)NLEJ23965384X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Shapiro, S. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
264 | 1 | |a Oxford, UK |b Blackwell Publishing Ltd |c 1992 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. | ||
533 | |d 2007 |f Blackwell Publishing Journal Backfiles 1879-2005 |7 |2007|||||||||| | ||
650 | 4 | |a elastic waves | |
773 | 0 | 8 | |i In |t Geophysical journal international |d Oxford . Wiley-Blackwell, 1922 |g 110(1992), 3, Seite 0 |h Online-Ressource |w (DE-627)NLEJ243927827 |w (DE-600)2006420-2 |x 1365-246X |7 nnns |
773 | 1 | 8 | |g volume:110 |g year:1992 |g number:3 |g pages:0 |
856 | 4 | 0 | |u http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x |q text/html |x Verlag |z Deutschlandweit zugänglich |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DJB | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 110 |j 1992 |e 3 |h 0 |
author_variant |
s a s sa sas |
---|---|
matchkey_str |
article:1365246X:1992----::lsiwvscteignrdainyrcaihm |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1111/j.1365-246X.1992.tb02094.x doi (DE-627)NLEJ23965384X DE-627 ger DE-627 rakwb Shapiro, S. A. verfasserin aut Elastic waves scattering and radiation by fractal inhomogeneity of a medium Oxford, UK Blackwell Publishing Ltd 1992 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. 2007 Blackwell Publishing Journal Backfiles 1879-2005 |2007|||||||||| elastic waves In Geophysical journal international Oxford . Wiley-Blackwell, 1922 110(1992), 3, Seite 0 Online-Ressource (DE-627)NLEJ243927827 (DE-600)2006420-2 1365-246X nnns volume:110 year:1992 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 110 1992 3 0 |
spelling |
10.1111/j.1365-246X.1992.tb02094.x doi (DE-627)NLEJ23965384X DE-627 ger DE-627 rakwb Shapiro, S. A. verfasserin aut Elastic waves scattering and radiation by fractal inhomogeneity of a medium Oxford, UK Blackwell Publishing Ltd 1992 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. 2007 Blackwell Publishing Journal Backfiles 1879-2005 |2007|||||||||| elastic waves In Geophysical journal international Oxford . Wiley-Blackwell, 1922 110(1992), 3, Seite 0 Online-Ressource (DE-627)NLEJ243927827 (DE-600)2006420-2 1365-246X nnns volume:110 year:1992 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 110 1992 3 0 |
allfields_unstemmed |
10.1111/j.1365-246X.1992.tb02094.x doi (DE-627)NLEJ23965384X DE-627 ger DE-627 rakwb Shapiro, S. A. verfasserin aut Elastic waves scattering and radiation by fractal inhomogeneity of a medium Oxford, UK Blackwell Publishing Ltd 1992 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. 2007 Blackwell Publishing Journal Backfiles 1879-2005 |2007|||||||||| elastic waves In Geophysical journal international Oxford . Wiley-Blackwell, 1922 110(1992), 3, Seite 0 Online-Ressource (DE-627)NLEJ243927827 (DE-600)2006420-2 1365-246X nnns volume:110 year:1992 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 110 1992 3 0 |
allfieldsGer |
10.1111/j.1365-246X.1992.tb02094.x doi (DE-627)NLEJ23965384X DE-627 ger DE-627 rakwb Shapiro, S. A. verfasserin aut Elastic waves scattering and radiation by fractal inhomogeneity of a medium Oxford, UK Blackwell Publishing Ltd 1992 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. 2007 Blackwell Publishing Journal Backfiles 1879-2005 |2007|||||||||| elastic waves In Geophysical journal international Oxford . Wiley-Blackwell, 1922 110(1992), 3, Seite 0 Online-Ressource (DE-627)NLEJ243927827 (DE-600)2006420-2 1365-246X nnns volume:110 year:1992 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 110 1992 3 0 |
allfieldsSound |
10.1111/j.1365-246X.1992.tb02094.x doi (DE-627)NLEJ23965384X DE-627 ger DE-627 rakwb Shapiro, S. A. verfasserin aut Elastic waves scattering and radiation by fractal inhomogeneity of a medium Oxford, UK Blackwell Publishing Ltd 1992 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. 2007 Blackwell Publishing Journal Backfiles 1879-2005 |2007|||||||||| elastic waves In Geophysical journal international Oxford . Wiley-Blackwell, 1922 110(1992), 3, Seite 0 Online-Ressource (DE-627)NLEJ243927827 (DE-600)2006420-2 1365-246X nnns volume:110 year:1992 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 110 1992 3 0 |
source |
In Geophysical journal international 110(1992), 3, Seite 0 volume:110 year:1992 number:3 pages:0 |
sourceStr |
In Geophysical journal international 110(1992), 3, Seite 0 volume:110 year:1992 number:3 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
elastic waves |
isfreeaccess_bool |
false |
container_title |
Geophysical journal international |
authorswithroles_txt_mv |
Shapiro, S. A. @@aut@@ |
publishDateDaySort_date |
1992-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ243927827 |
id |
NLEJ23965384X |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ23965384X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707092228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120426s1992 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1365-246X.1992.tb02094.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ23965384X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shapiro, S. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elastic waves scattering and radiation by fractal inhomogeneity of a medium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Publishing Ltd</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)&#x006e;̈, where θ is a scattering angle and the constant &#x006e;̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+&#x006e;̈ if &#x006e;̈>-2 and σ∝ω2 if &#x006e;̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2007</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2007||||||||||</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic waves</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geophysical journal international</subfield><subfield code="d">Oxford . Wiley-Blackwell, 1922</subfield><subfield code="g">110(1992), 3, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243927827</subfield><subfield code="w">(DE-600)2006420-2</subfield><subfield code="x">1365-246X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">1992</subfield><subfield code="e">3</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
series2 |
Blackwell Publishing Journal Backfiles 1879-2005 |
author |
Shapiro, S. A. |
spellingShingle |
Shapiro, S. A. misc elastic waves Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
authorStr |
Shapiro, S. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ243927827 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
NL |
publishPlace |
Oxford, UK |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1365-246X |
topic_title |
Elastic waves scattering and radiation by fractal inhomogeneity of a medium elastic waves |
publisher |
Blackwell Publishing Ltd |
publisherStr |
Blackwell Publishing Ltd |
topic |
misc elastic waves |
topic_unstemmed |
misc elastic waves |
topic_browse |
misc elastic waves |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Geophysical journal international |
hierarchy_parent_id |
NLEJ243927827 |
hierarchy_top_title |
Geophysical journal international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ243927827 (DE-600)2006420-2 |
title |
Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
ctrlnum |
(DE-627)NLEJ23965384X |
title_full |
Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
author_sort |
Shapiro, S. A. |
journal |
Geophysical journal international |
journalStr |
Geophysical journal international |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Shapiro, S. A. |
container_volume |
110 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Shapiro, S. A. |
doi_str_mv |
10.1111/j.1365-246X.1992.tb02094.x |
title_sort |
elastic waves scattering and radiation by fractal inhomogeneity of a medium |
title_auth |
Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
abstract |
I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. |
abstractGer |
I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. |
abstract_unstemmed |
I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)n̈, where θ is a scattering angle and the constant n̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+n̈ if n̈>-2 and σ∝ω2 if n̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems. |
collection_details |
GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE |
container_issue |
3 |
title_short |
Elastic waves scattering and radiation by fractal inhomogeneity of a medium |
url |
http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x |
remote_bool |
true |
ppnlink |
NLEJ243927827 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1111/j.1365-246X.1992.tb02094.x |
up_date |
2024-07-06T08:00:16.266Z |
_version_ |
1803815817071034368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ23965384X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707092228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120426s1992 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1365-246X.1992.tb02094.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ23965384X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shapiro, S. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elastic waves scattering and radiation by fractal inhomogeneity of a medium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Publishing Ltd</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">I obtain the Born approximation for the scattered intensity I, the differential cross-sections σd, and the total scattering cross-sections σ of elastic wavefields scattered by a mass fractal, an object with a fractal surface and a fragment of a turbulent medium. The results for I and σd are valid for an arbitrary anisotropic random discrete or continuous inhomogeneity and they are in agreement with the well known results for discrete inclusions (Gubernatis, Domany & Krumhansl 1977b). For fractal inhomogeneities I show that: (1) for small angle scattering I∝ω4+ω(sin θ/2)&#x006e;̈, where θ is a scattering angle and the constant &#x006e;̈ depends linearly on the fractal dimension; (2) σ∝ω4+ω; (3) σ∝ω4+&#x006e;̈ if &#x006e;̈>-2 and σ∝ω2 if &#x006e;̈≤ -2; and (4) the Fourier transform of the correlation function of the wavefield Γ which is coherently radiated by white noise point sources distributed on fractal objects obeys [Γ] ∝ωσ. Applying the results for σd I show that the model of inhomogeneities with a fractal surface is in agreement with the fractal dimensions of some fault systems.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2007</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2007||||||||||</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic waves</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geophysical journal international</subfield><subfield code="d">Oxford . Wiley-Blackwell, 1922</subfield><subfield code="g">110(1992), 3, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243927827</subfield><subfield code="w">(DE-600)2006420-2</subfield><subfield code="x">1365-246X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1365-246X.1992.tb02094.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">1992</subfield><subfield code="e">3</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4004354 |