A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β...
Ausführliche Beschreibung
Autor*in: |
Guenzi, Eric [verfasserIn] Gasc, Anne-Marie [verfasserIn] Sicard, Michel A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Oxford, UK: Blackwell Publishing Ltd ; 1994 |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
2006 ; Blackwell Publishing Journal Backfiles 1879-2005 |
---|---|
Übergeordnetes Werk: |
In: Molecular microbiology - Oxford [u.a.] : Wiley-Blackwell, 1987, 12(1994), 3, Seite 0 |
Übergeordnetes Werk: |
volume:12 ; year:1994 ; number:3 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1111/j.1365-2958.1994.tb01038.x |
---|
Katalog-ID: |
NLEJ241794005 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ241794005 | ||
003 | DE-627 | ||
005 | 20210707142113.0 | ||
007 | cr uuu---uuuuu | ||
008 | 120427s1994 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1111/j.1365-2958.1994.tb01038.x |2 doi | |
035 | |a (DE-627)NLEJ241794005 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Guenzi, Eric |e verfasserin |4 aut | |
245 | 1 | 0 | |a A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
264 | 1 | |a Oxford, UK |b Blackwell Publishing Ltd |c 1994 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. | ||
533 | |d 2006 |f Blackwell Publishing Journal Backfiles 1879-2005 |7 |2006|||||||||| | ||
700 | 1 | |a Gasc, Anne-Marie |e verfasserin |4 aut | |
700 | 1 | |a Sicard, Michel A. |e verfasserin |4 aut | |
700 | 1 | |a Hakenbeck, Regine |4 oth | |
773 | 0 | 8 | |i In |t Molecular microbiology |d Oxford [u.a.] : Wiley-Blackwell, 1987 |g 12(1994), 3, Seite 0 |h Online-Ressource |w (DE-627)NLEJ243926537 |w (DE-600)1501537-3 |x 1365-2958 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:1994 |g number:3 |g pages:0 |
856 | 4 | 0 | |u http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x |q text/html |x Verlag |z Deutschlandweit zugänglich |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DJB | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 12 |j 1994 |e 3 |h 0 |
author_variant |
e g eg a m g amg m a s ma mas |
---|---|
matchkey_str |
article:13652958:1994----::toopnnsgatasuigytmsnovdnoptnenpnclissetbltilbrtr |
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
10.1111/j.1365-2958.1994.tb01038.x doi (DE-627)NLEJ241794005 DE-627 ger DE-627 rakwb Guenzi, Eric verfasserin aut A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae Oxford, UK Blackwell Publishing Ltd 1994 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. 2006 Blackwell Publishing Journal Backfiles 1879-2005 |2006|||||||||| Gasc, Anne-Marie verfasserin aut Sicard, Michel A. verfasserin aut Hakenbeck, Regine oth In Molecular microbiology Oxford [u.a.] : Wiley-Blackwell, 1987 12(1994), 3, Seite 0 Online-Ressource (DE-627)NLEJ243926537 (DE-600)1501537-3 1365-2958 nnns volume:12 year:1994 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 12 1994 3 0 |
spelling |
10.1111/j.1365-2958.1994.tb01038.x doi (DE-627)NLEJ241794005 DE-627 ger DE-627 rakwb Guenzi, Eric verfasserin aut A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae Oxford, UK Blackwell Publishing Ltd 1994 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. 2006 Blackwell Publishing Journal Backfiles 1879-2005 |2006|||||||||| Gasc, Anne-Marie verfasserin aut Sicard, Michel A. verfasserin aut Hakenbeck, Regine oth In Molecular microbiology Oxford [u.a.] : Wiley-Blackwell, 1987 12(1994), 3, Seite 0 Online-Ressource (DE-627)NLEJ243926537 (DE-600)1501537-3 1365-2958 nnns volume:12 year:1994 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 12 1994 3 0 |
allfields_unstemmed |
10.1111/j.1365-2958.1994.tb01038.x doi (DE-627)NLEJ241794005 DE-627 ger DE-627 rakwb Guenzi, Eric verfasserin aut A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae Oxford, UK Blackwell Publishing Ltd 1994 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. 2006 Blackwell Publishing Journal Backfiles 1879-2005 |2006|||||||||| Gasc, Anne-Marie verfasserin aut Sicard, Michel A. verfasserin aut Hakenbeck, Regine oth In Molecular microbiology Oxford [u.a.] : Wiley-Blackwell, 1987 12(1994), 3, Seite 0 Online-Ressource (DE-627)NLEJ243926537 (DE-600)1501537-3 1365-2958 nnns volume:12 year:1994 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 12 1994 3 0 |
allfieldsGer |
10.1111/j.1365-2958.1994.tb01038.x doi (DE-627)NLEJ241794005 DE-627 ger DE-627 rakwb Guenzi, Eric verfasserin aut A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae Oxford, UK Blackwell Publishing Ltd 1994 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. 2006 Blackwell Publishing Journal Backfiles 1879-2005 |2006|||||||||| Gasc, Anne-Marie verfasserin aut Sicard, Michel A. verfasserin aut Hakenbeck, Regine oth In Molecular microbiology Oxford [u.a.] : Wiley-Blackwell, 1987 12(1994), 3, Seite 0 Online-Ressource (DE-627)NLEJ243926537 (DE-600)1501537-3 1365-2958 nnns volume:12 year:1994 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 12 1994 3 0 |
allfieldsSound |
10.1111/j.1365-2958.1994.tb01038.x doi (DE-627)NLEJ241794005 DE-627 ger DE-627 rakwb Guenzi, Eric verfasserin aut A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae Oxford, UK Blackwell Publishing Ltd 1994 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. 2006 Blackwell Publishing Journal Backfiles 1879-2005 |2006|||||||||| Gasc, Anne-Marie verfasserin aut Sicard, Michel A. verfasserin aut Hakenbeck, Regine oth In Molecular microbiology Oxford [u.a.] : Wiley-Blackwell, 1987 12(1994), 3, Seite 0 Online-Ressource (DE-627)NLEJ243926537 (DE-600)1501537-3 1365-2958 nnns volume:12 year:1994 number:3 pages:0 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 12 1994 3 0 |
source |
In Molecular microbiology 12(1994), 3, Seite 0 volume:12 year:1994 number:3 pages:0 |
sourceStr |
In Molecular microbiology 12(1994), 3, Seite 0 volume:12 year:1994 number:3 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Molecular microbiology |
authorswithroles_txt_mv |
Guenzi, Eric @@aut@@ Gasc, Anne-Marie @@aut@@ Sicard, Michel A. @@aut@@ Hakenbeck, Regine @@oth@@ |
publishDateDaySort_date |
1994-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ243926537 |
id |
NLEJ241794005 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ241794005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707142113.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120427s1994 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1365-2958.1994.tb01038.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ241794005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guenzi, Eric</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Publishing Ltd</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2006</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2006||||||||||</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gasc, Anne-Marie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sicard, Michel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hakenbeck, Regine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecular microbiology</subfield><subfield code="d">Oxford [u.a.] : Wiley-Blackwell, 1987</subfield><subfield code="g">12(1994), 3, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243926537</subfield><subfield code="w">(DE-600)1501537-3</subfield><subfield code="x">1365-2958</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1994</subfield><subfield code="e">3</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
series2 |
Blackwell Publishing Journal Backfiles 1879-2005 |
author |
Guenzi, Eric |
spellingShingle |
Guenzi, Eric A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
authorStr |
Guenzi, Eric |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ243926537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
NL |
publishPlace |
Oxford, UK |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1365-2958 |
topic_title |
A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
publisher |
Blackwell Publishing Ltd |
publisherStr |
Blackwell Publishing Ltd |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r h rh |
hierarchy_parent_title |
Molecular microbiology |
hierarchy_parent_id |
NLEJ243926537 |
hierarchy_top_title |
Molecular microbiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ243926537 (DE-600)1501537-3 |
title |
A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
ctrlnum |
(DE-627)NLEJ241794005 |
title_full |
A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
author_sort |
Guenzi, Eric |
journal |
Molecular microbiology |
journalStr |
Molecular microbiology |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Guenzi, Eric Gasc, Anne-Marie Sicard, Michel A. |
container_volume |
12 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Guenzi, Eric |
doi_str_mv |
10.1111/j.1365-2958.1994.tb01038.x |
author2-role |
verfasserin |
title_sort |
a two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of streptococcus pneumoniae |
title_auth |
A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
abstract |
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. |
abstractGer |
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. |
abstract_unstemmed |
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation. |
collection_details |
GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE |
container_issue |
3 |
title_short |
A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae |
url |
http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x |
remote_bool |
true |
author2 |
Gasc, Anne-Marie Sicard, Michel A. Hakenbeck, Regine |
author2Str |
Gasc, Anne-Marie Sicard, Michel A. Hakenbeck, Regine |
ppnlink |
NLEJ243926537 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1111/j.1365-2958.1994.tb01038.x |
up_date |
2024-07-05T23:54:53.706Z |
_version_ |
1803785279858802688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ241794005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707142113.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120427s1994 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1365-2958.1994.tb01038.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ241794005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guenzi, Eric</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Publishing Ltd</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2006</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2006||||||||||</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gasc, Anne-Marie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sicard, Michel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hakenbeck, Regine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecular microbiology</subfield><subfield code="d">Oxford [u.a.] : Wiley-Blackwell, 1987</subfield><subfield code="g">12(1994), 3, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243926537</subfield><subfield code="w">(DE-600)1501537-3</subfield><subfield code="x">1365-2958</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1994</subfield><subfield code="e">3</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4016666 |