Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm wit...
Ausführliche Beschreibung
Autor*in: |
Dusza, J. [verfasserIn] Kovalčík, J. [verfasserIn] Hvizdoš, P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Oxford, UK: Blackwell Science Inc ; 2005 |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
2005 ; Blackwell Publishing Journal Backfiles 1879-2005 |
---|---|
Übergeordnetes Werk: |
In: Journal of the American Ceramic Society - American Ceramic Society ; GKD-ID: 6113X, Oxford [u.a.] : Wiley-Blackwell, 1918, 88(2005), 6, Seite 0 |
Übergeordnetes Werk: |
volume:88 ; year:2005 ; number:6 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1111/j.1551-2916.2005.00289.x |
---|
Katalog-ID: |
NLEJ243445970 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ243445970 | ||
003 | DE-627 | ||
005 | 20210707181210.0 | ||
007 | cr uuu---uuuuu | ||
008 | 120427s2005 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1111/j.1551-2916.2005.00289.x |2 doi | |
035 | |a (DE-627)NLEJ243445970 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Dusza, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
264 | 1 | |a Oxford, UK |b Blackwell Science Inc |c 2005 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. | ||
533 | |d 2005 |f Blackwell Publishing Journal Backfiles 1879-2005 |7 |2005|||||||||| | ||
700 | 1 | |a Kovalčík, J. |e verfasserin |4 aut | |
700 | 1 | |a Hvizdoš, P. |e verfasserin |4 aut | |
700 | 1 | |a Šajgalík, P. |4 oth | |
700 | 1 | |a Hnatko, M. |4 oth | |
700 | 1 | |a Reece, M. J. |4 oth | |
773 | 0 | 8 | |i In |a American Ceramic Society ; GKD-ID: 6113X |t Journal of the American Ceramic Society |d Oxford [u.a.] : Wiley-Blackwell, 1918 |g 88(2005), 6, Seite 0 |h Online-Ressource |w (DE-627)NLEJ243927835 |w (DE-600)2008170-4 |x 1551-2916 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2005 |g number:6 |g pages:0 |
856 | 4 | 0 | |u http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x |q text/html |x Verlag |z Deutschlandweit zugänglich |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DJB | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 88 |j 2005 |e 6 |h 0 |
author_variant |
j d jd j k jk p h ph |
---|---|
matchkey_str |
article:15512916:2005----::nacdrerssatiiontiea |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1111/j.1551-2916.2005.00289.x doi (DE-627)NLEJ243445970 DE-627 ger DE-627 rakwb Dusza, J. verfasserin aut Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite Oxford, UK Blackwell Science Inc 2005 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. 2005 Blackwell Publishing Journal Backfiles 1879-2005 |2005|||||||||| Kovalčík, J. verfasserin aut Hvizdoš, P. verfasserin aut Šajgalík, P. oth Hnatko, M. oth Reece, M. J. oth In American Ceramic Society ; GKD-ID: 6113X Journal of the American Ceramic Society Oxford [u.a.] : Wiley-Blackwell, 1918 88(2005), 6, Seite 0 Online-Ressource (DE-627)NLEJ243927835 (DE-600)2008170-4 1551-2916 nnns volume:88 year:2005 number:6 pages:0 http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 88 2005 6 0 |
spelling |
10.1111/j.1551-2916.2005.00289.x doi (DE-627)NLEJ243445970 DE-627 ger DE-627 rakwb Dusza, J. verfasserin aut Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite Oxford, UK Blackwell Science Inc 2005 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. 2005 Blackwell Publishing Journal Backfiles 1879-2005 |2005|||||||||| Kovalčík, J. verfasserin aut Hvizdoš, P. verfasserin aut Šajgalík, P. oth Hnatko, M. oth Reece, M. J. oth In American Ceramic Society ; GKD-ID: 6113X Journal of the American Ceramic Society Oxford [u.a.] : Wiley-Blackwell, 1918 88(2005), 6, Seite 0 Online-Ressource (DE-627)NLEJ243927835 (DE-600)2008170-4 1551-2916 nnns volume:88 year:2005 number:6 pages:0 http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 88 2005 6 0 |
allfields_unstemmed |
10.1111/j.1551-2916.2005.00289.x doi (DE-627)NLEJ243445970 DE-627 ger DE-627 rakwb Dusza, J. verfasserin aut Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite Oxford, UK Blackwell Science Inc 2005 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. 2005 Blackwell Publishing Journal Backfiles 1879-2005 |2005|||||||||| Kovalčík, J. verfasserin aut Hvizdoš, P. verfasserin aut Šajgalík, P. oth Hnatko, M. oth Reece, M. J. oth In American Ceramic Society ; GKD-ID: 6113X Journal of the American Ceramic Society Oxford [u.a.] : Wiley-Blackwell, 1918 88(2005), 6, Seite 0 Online-Ressource (DE-627)NLEJ243927835 (DE-600)2008170-4 1551-2916 nnns volume:88 year:2005 number:6 pages:0 http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 88 2005 6 0 |
allfieldsGer |
10.1111/j.1551-2916.2005.00289.x doi (DE-627)NLEJ243445970 DE-627 ger DE-627 rakwb Dusza, J. verfasserin aut Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite Oxford, UK Blackwell Science Inc 2005 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. 2005 Blackwell Publishing Journal Backfiles 1879-2005 |2005|||||||||| Kovalčík, J. verfasserin aut Hvizdoš, P. verfasserin aut Šajgalík, P. oth Hnatko, M. oth Reece, M. J. oth In American Ceramic Society ; GKD-ID: 6113X Journal of the American Ceramic Society Oxford [u.a.] : Wiley-Blackwell, 1918 88(2005), 6, Seite 0 Online-Ressource (DE-627)NLEJ243927835 (DE-600)2008170-4 1551-2916 nnns volume:88 year:2005 number:6 pages:0 http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 88 2005 6 0 |
allfieldsSound |
10.1111/j.1551-2916.2005.00289.x doi (DE-627)NLEJ243445970 DE-627 ger DE-627 rakwb Dusza, J. verfasserin aut Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite Oxford, UK Blackwell Science Inc 2005 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. 2005 Blackwell Publishing Journal Backfiles 1879-2005 |2005|||||||||| Kovalčík, J. verfasserin aut Hvizdoš, P. verfasserin aut Šajgalík, P. oth Hnatko, M. oth Reece, M. J. oth In American Ceramic Society ; GKD-ID: 6113X Journal of the American Ceramic Society Oxford [u.a.] : Wiley-Blackwell, 1918 88(2005), 6, Seite 0 Online-Ressource (DE-627)NLEJ243927835 (DE-600)2008170-4 1551-2916 nnns volume:88 year:2005 number:6 pages:0 http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x text/html Verlag Deutschlandweit zugänglich Volltext GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE AR 88 2005 6 0 |
source |
In Journal of the American Ceramic Society 88(2005), 6, Seite 0 volume:88 year:2005 number:6 pages:0 |
sourceStr |
In Journal of the American Ceramic Society 88(2005), 6, Seite 0 volume:88 year:2005 number:6 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Journal of the American Ceramic Society |
authorswithroles_txt_mv |
Dusza, J. @@aut@@ Kovalčík, J. @@aut@@ Hvizdoš, P. @@aut@@ Šajgalík, P. @@oth@@ Hnatko, M. @@oth@@ Reece, M. J. @@oth@@ |
publishDateDaySort_date |
2005-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ243927835 |
id |
NLEJ243445970 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ243445970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707181210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120427s2005 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1551-2916.2005.00289.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ243445970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dusza, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Science Inc</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2005</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2005||||||||||</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovalčík, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hvizdoš, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šajgalík, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hnatko, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reece, M. J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="a">American Ceramic Society ; GKD-ID: 6113X</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Oxford [u.a.] : Wiley-Blackwell, 1918</subfield><subfield code="g">88(2005), 6, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243927835</subfield><subfield code="w">(DE-600)2008170-4</subfield><subfield code="x">1551-2916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
series2 |
Blackwell Publishing Journal Backfiles 1879-2005 |
author |
Dusza, J. |
spellingShingle |
Dusza, J. Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
authorStr |
Dusza, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ243927835 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
NL |
publishPlace |
Oxford, UK |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1551-2916 |
topic_title |
Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
publisher |
Blackwell Science Inc |
publisherStr |
Blackwell Science Inc |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p š pš m h mh m j r mj mjr |
hierarchy_parent_title |
Journal of the American Ceramic Society |
hierarchy_parent_id |
NLEJ243927835 |
hierarchy_top_title |
Journal of the American Ceramic Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ243927835 (DE-600)2008170-4 |
title |
Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
ctrlnum |
(DE-627)NLEJ243445970 |
title_full |
Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
author_sort |
Dusza, J. |
journal |
Journal of the American Ceramic Society |
journalStr |
Journal of the American Ceramic Society |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Dusza, J. Kovalčík, J. Hvizdoš, P. |
container_volume |
88 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Dusza, J. |
doi_str_mv |
10.1111/j.1551-2916.2005.00289.x |
author2-role |
verfasserin |
title_sort |
enhanced creep resistant silicon-nitride-based nanocomposite |
title_auth |
Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
abstract |
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. |
abstractGer |
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. |
abstract_unstemmed |
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. |
collection_details |
GBV_USEFLAG_U ZDB-1-DJB GBV_NL_ARTICLE |
container_issue |
6 |
title_short |
Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite |
url |
http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x |
remote_bool |
true |
author2 |
Kovalčík, J. Hvizdoš, P. Šajgalík, P. Hnatko, M. Reece, M. J. |
author2Str |
Kovalčík, J. Hvizdoš, P. Šajgalík, P. Hnatko, M. Reece, M. J. |
ppnlink |
NLEJ243927835 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1111/j.1551-2916.2005.00289.x |
up_date |
2024-07-06T05:28:39.018Z |
_version_ |
1803806277913018368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ243445970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210707181210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">120427s2005 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/j.1551-2916.2005.00289.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ243445970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dusza, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, UK</subfield><subfield code="b">Blackwell Science Inc</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="d">2005</subfield><subfield code="f">Blackwell Publishing Journal Backfiles 1879-2005</subfield><subfield code="7">|2005||||||||||</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovalčík, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hvizdoš, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šajgalík, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hnatko, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reece, M. J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="a">American Ceramic Society ; GKD-ID: 6113X</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Oxford [u.a.] : Wiley-Blackwell, 1918</subfield><subfield code="g">88(2005), 6, Seite 0</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ243927835</subfield><subfield code="w">(DE-600)2008170-4</subfield><subfield code="x">1551-2916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1111/j.1551-2916.2005.00289.x</subfield><subfield code="q">text/html</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DJB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4000044 |