Fractal Top for Contractive and Non-Contractive Transformations
Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so th...
Ausführliche Beschreibung
Autor*in: |
Jain, Sarika [verfasserIn] Singh, S. L. [author] Mishra, S. N. [author] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
Iterated Function System (IFS) |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
IGI Global InfoSci Journals Archive 2000 - 2012 |
---|---|
Übergeordnetes Werk: |
In: International journal of artificial life research - Hershey, Pa : IGI Global, 2010, 3(2012), 4, Seite 49-65 |
Übergeordnetes Werk: |
volume:3 ; year:2012 ; number:4 ; pages:49-65 |
Links: |
---|
DOI / URN: |
10.4018/ijalr.2012100104 |
---|
Katalog-ID: |
NLEJ244445281 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ244445281 | ||
003 | DE-627 | ||
005 | 20240202180050.0 | ||
007 | cr uuu---uuuuu | ||
008 | 150605s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4018/ijalr.2012100104 |2 doi | |
035 | |a (DE-627)NLEJ244445281 | ||
035 | |a (VZGNL)10.4018/ijalr.2012100104 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jain, Sarika |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fractal Top for Contractive and Non-Contractive Transformations |
264 | 1 | |c 2012 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations | ||
533 | |f IGI Global InfoSci Journals Archive 2000 - 2012 | ||
650 | 4 | |a Colour Stealing | |
650 | 4 | |a Contractive Transformation | |
650 | 4 | |a Fixed Point | |
650 | 4 | |a Fractal Top | |
650 | 4 | |a Hénon Transformation | |
650 | 4 | |a Iterated Function System (IFS) | |
650 | 4 | |a Non-Contractive Transformation | |
650 | 4 | |a Non-Expansive Transformation | |
700 | 1 | |a Singh, S. L. |e author |4 aut | |
700 | 1 | |a Mishra, S. N. |e author |4 aut | |
773 | 0 | 8 | |i In |t International journal of artificial life research |d Hershey, Pa : IGI Global, 2010 |g 3(2012), 4, Seite 49-65 |h Online-Ressource |w (DE-627)NLEJ244418608 |w (DE-600)2696257-3 |x 1947-3079 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2012 |g number:4 |g pages:49-65 |
856 | 4 | 0 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 |m X:IGIG |x Verlag |z Deutschlandweit zugänglich |
856 | 4 | 2 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true |q text/html |y Abstract |z Deutschlandweit zugänglich |
912 | |a ZDB-1-GIS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 3 |j 2012 |e 4 |h 49-65 |
author_variant |
s j sj s l s sl sls s n m sn snm |
---|---|
matchkey_str |
article:19473079:2012----::rcatpocnrciennnotatvt |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.4018/ijalr.2012100104 doi (DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 DE-627 ger DE-627 rakwb eng Jain, Sarika verfasserin aut Fractal Top for Contractive and Non-Contractive Transformations 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations IGI Global InfoSci Journals Archive 2000 - 2012 Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation Singh, S. L. author aut Mishra, S. N. author aut In International journal of artificial life research Hershey, Pa : IGI Global, 2010 3(2012), 4, Seite 49-65 Online-Ressource (DE-627)NLEJ244418608 (DE-600)2696257-3 1947-3079 nnns volume:3 year:2012 number:4 pages:49-65 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 3 2012 4 49-65 |
spelling |
10.4018/ijalr.2012100104 doi (DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 DE-627 ger DE-627 rakwb eng Jain, Sarika verfasserin aut Fractal Top for Contractive and Non-Contractive Transformations 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations IGI Global InfoSci Journals Archive 2000 - 2012 Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation Singh, S. L. author aut Mishra, S. N. author aut In International journal of artificial life research Hershey, Pa : IGI Global, 2010 3(2012), 4, Seite 49-65 Online-Ressource (DE-627)NLEJ244418608 (DE-600)2696257-3 1947-3079 nnns volume:3 year:2012 number:4 pages:49-65 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 3 2012 4 49-65 |
allfields_unstemmed |
10.4018/ijalr.2012100104 doi (DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 DE-627 ger DE-627 rakwb eng Jain, Sarika verfasserin aut Fractal Top for Contractive and Non-Contractive Transformations 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations IGI Global InfoSci Journals Archive 2000 - 2012 Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation Singh, S. L. author aut Mishra, S. N. author aut In International journal of artificial life research Hershey, Pa : IGI Global, 2010 3(2012), 4, Seite 49-65 Online-Ressource (DE-627)NLEJ244418608 (DE-600)2696257-3 1947-3079 nnns volume:3 year:2012 number:4 pages:49-65 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 3 2012 4 49-65 |
allfieldsGer |
10.4018/ijalr.2012100104 doi (DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 DE-627 ger DE-627 rakwb eng Jain, Sarika verfasserin aut Fractal Top for Contractive and Non-Contractive Transformations 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations IGI Global InfoSci Journals Archive 2000 - 2012 Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation Singh, S. L. author aut Mishra, S. N. author aut In International journal of artificial life research Hershey, Pa : IGI Global, 2010 3(2012), 4, Seite 49-65 Online-Ressource (DE-627)NLEJ244418608 (DE-600)2696257-3 1947-3079 nnns volume:3 year:2012 number:4 pages:49-65 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 3 2012 4 49-65 |
allfieldsSound |
10.4018/ijalr.2012100104 doi (DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 DE-627 ger DE-627 rakwb eng Jain, Sarika verfasserin aut Fractal Top for Contractive and Non-Contractive Transformations 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations IGI Global InfoSci Journals Archive 2000 - 2012 Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation Singh, S. L. author aut Mishra, S. N. author aut In International journal of artificial life research Hershey, Pa : IGI Global, 2010 3(2012), 4, Seite 49-65 Online-Ressource (DE-627)NLEJ244418608 (DE-600)2696257-3 1947-3079 nnns volume:3 year:2012 number:4 pages:49-65 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 3 2012 4 49-65 |
language |
English |
source |
In International journal of artificial life research 3(2012), 4, Seite 49-65 volume:3 year:2012 number:4 pages:49-65 |
sourceStr |
In International journal of artificial life research 3(2012), 4, Seite 49-65 volume:3 year:2012 number:4 pages:49-65 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation |
isfreeaccess_bool |
false |
container_title |
International journal of artificial life research |
authorswithroles_txt_mv |
Jain, Sarika @@aut@@ Singh, S. L. @@aut@@ Mishra, S. N. @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ244418608 |
id |
NLEJ244445281 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244445281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/ijalr.2012100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244445281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/ijalr.2012100104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jain, Sarika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractal Top for Contractive and Non-Contractive Transformations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colour Stealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contractive Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal Top</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hénon Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated Function System (IFS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Contractive Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Expansive Transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, S. L.</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, S. N.</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of artificial life research</subfield><subfield code="d">Hershey, Pa : IGI Global, 2010</subfield><subfield code="g">3(2012), 4, Seite 49-65</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244418608</subfield><subfield code="w">(DE-600)2696257-3</subfield><subfield code="x">1947-3079</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:49-65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">49-65</subfield></datafield></record></collection>
|
series2 |
IGI Global InfoSci Journals Archive 2000 - 2012 |
author |
Jain, Sarika |
spellingShingle |
Jain, Sarika misc Colour Stealing misc Contractive Transformation misc Fixed Point misc Fractal Top misc Hénon Transformation misc Iterated Function System (IFS) misc Non-Contractive Transformation misc Non-Expansive Transformation Fractal Top for Contractive and Non-Contractive Transformations |
authorStr |
Jain, Sarika |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ244418608 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1947-3079 |
topic_title |
Fractal Top for Contractive and Non-Contractive Transformations Colour Stealing Contractive Transformation Fixed Point Fractal Top Hénon Transformation Iterated Function System (IFS) Non-Contractive Transformation Non-Expansive Transformation |
topic |
misc Colour Stealing misc Contractive Transformation misc Fixed Point misc Fractal Top misc Hénon Transformation misc Iterated Function System (IFS) misc Non-Contractive Transformation misc Non-Expansive Transformation |
topic_unstemmed |
misc Colour Stealing misc Contractive Transformation misc Fixed Point misc Fractal Top misc Hénon Transformation misc Iterated Function System (IFS) misc Non-Contractive Transformation misc Non-Expansive Transformation |
topic_browse |
misc Colour Stealing misc Contractive Transformation misc Fixed Point misc Fractal Top misc Hénon Transformation misc Iterated Function System (IFS) misc Non-Contractive Transformation misc Non-Expansive Transformation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
International journal of artificial life research |
hierarchy_parent_id |
NLEJ244418608 |
hierarchy_top_title |
International journal of artificial life research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ244418608 (DE-600)2696257-3 |
title |
Fractal Top for Contractive and Non-Contractive Transformations |
ctrlnum |
(DE-627)NLEJ244445281 (VZGNL)10.4018/ijalr.2012100104 |
title_full |
Fractal Top for Contractive and Non-Contractive Transformations |
author_sort |
Jain, Sarika |
journal |
International journal of artificial life research |
journalStr |
International journal of artificial life research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
zzz |
container_start_page |
49 |
author_browse |
Jain, Sarika Singh, S. L. Mishra, S. N. |
container_volume |
3 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Jain, Sarika |
doi_str_mv |
10.4018/ijalr.2012100104 |
author2-role |
author |
title_sort |
fractal top for contractive and non-contractive transformations |
title_auth |
Fractal Top for Contractive and Non-Contractive Transformations |
abstract |
Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations |
abstractGer |
Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations |
abstract_unstemmed |
Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations |
collection_details |
ZDB-1-GIS GBV_NL_ARTICLE |
container_issue |
4 |
title_short |
Fractal Top for Contractive and Non-Contractive Transformations |
url |
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true |
remote_bool |
true |
author2 |
Singh, S. L. Mishra, S. N. |
author2Str |
Singh, S. L. Mishra, S. N. |
ppnlink |
NLEJ244418608 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.4018/ijalr.2012100104 |
up_date |
2024-07-06T07:55:25.329Z |
_version_ |
1803815512001478656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244445281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/ijalr.2012100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244445281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/ijalr.2012100104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jain, Sarika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractal Top for Contractive and Non-Contractive Transformations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colour Stealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contractive Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal Top</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hénon Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated Function System (IFS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Contractive Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Expansive Transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, S. L.</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, S. N.</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of artificial life research</subfield><subfield code="d">Hershey, Pa : IGI Global, 2010</subfield><subfield code="g">3(2012), 4, Seite 49-65</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244418608</subfield><subfield code="w">(DE-600)2696257-3</subfield><subfield code="x">1947-3079</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:49-65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijalr.2012100104&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">49-65</subfield></datafield></record></collection>
|
score |
7.4013433 |