Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets
Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data...
Ausführliche Beschreibung
Autor*in: |
Wan, Renxia [verfasserIn] Gao, Yuelin [author] Li, Caixia [author] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
IGI Global InfoSci Journals Archive 2000 - 2012 |
---|---|
Übergeordnetes Werk: |
In: International journal of data warehousing and mining - Hershey, Pa : IGI Global, 2005, 8(2012), 4, Seite 82-107 |
Übergeordnetes Werk: |
volume:8 ; year:2012 ; number:4 ; pages:82-107 |
Links: |
---|
DOI / URN: |
10.4018/jdwm.2012100104 |
---|
Katalog-ID: |
NLEJ244463018 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ244463018 | ||
003 | DE-627 | ||
005 | 20240202180123.0 | ||
007 | cr uuu---uuuuu | ||
008 | 150605s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4018/jdwm.2012100104 |2 doi | |
035 | |a (DE-627)NLEJ244463018 | ||
035 | |a (VZGNL)10.4018/jdwm.2012100104 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wan, Renxia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
264 | 1 | |c 2012 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes | ||
533 | |f IGI Global InfoSci Journals Archive 2000 - 2012 | ||
650 | 4 | |a C-Means | |
650 | 4 | |a Fuzzy C-Means | |
650 | 4 | |a Fuzzy Possibilitic | |
650 | 4 | |a Large Data Set | |
650 | 4 | |a Weighted Cluster | |
650 | 4 | |a Weighted Fuzzy-Possibilitic C-Means | |
700 | 1 | |a Gao, Yuelin |e author |4 aut | |
700 | 1 | |a Li, Caixia |e author |4 aut | |
773 | 0 | 8 | |i In |t International journal of data warehousing and mining |d Hershey, Pa : IGI Global, 2005 |g 8(2012), 4, Seite 82-107 |h Online-Ressource |w (DE-627)NLEJ244418896 |w (DE-600)2399996-2 |x 1548-3932 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2012 |g number:4 |g pages:82-107 |
856 | 4 | 0 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 |m X:IGIG |x Verlag |z Deutschlandweit zugänglich |
856 | 4 | 2 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true |q text/html |y Abstract |z Deutschlandweit zugänglich |
912 | |a ZDB-1-GIS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 8 |j 2012 |e 4 |h 82-107 |
author_variant |
r w rw y g yg c l cl |
---|---|
matchkey_str |
article:15483932:2012----::egtduzpsiiitcmasvr |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.4018/jdwm.2012100104 doi (DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 DE-627 ger DE-627 rakwb eng Wan, Renxia verfasserin aut Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes IGI Global InfoSci Journals Archive 2000 - 2012 C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means Gao, Yuelin author aut Li, Caixia author aut In International journal of data warehousing and mining Hershey, Pa : IGI Global, 2005 8(2012), 4, Seite 82-107 Online-Ressource (DE-627)NLEJ244418896 (DE-600)2399996-2 1548-3932 nnns volume:8 year:2012 number:4 pages:82-107 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 8 2012 4 82-107 |
spelling |
10.4018/jdwm.2012100104 doi (DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 DE-627 ger DE-627 rakwb eng Wan, Renxia verfasserin aut Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes IGI Global InfoSci Journals Archive 2000 - 2012 C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means Gao, Yuelin author aut Li, Caixia author aut In International journal of data warehousing and mining Hershey, Pa : IGI Global, 2005 8(2012), 4, Seite 82-107 Online-Ressource (DE-627)NLEJ244418896 (DE-600)2399996-2 1548-3932 nnns volume:8 year:2012 number:4 pages:82-107 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 8 2012 4 82-107 |
allfields_unstemmed |
10.4018/jdwm.2012100104 doi (DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 DE-627 ger DE-627 rakwb eng Wan, Renxia verfasserin aut Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes IGI Global InfoSci Journals Archive 2000 - 2012 C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means Gao, Yuelin author aut Li, Caixia author aut In International journal of data warehousing and mining Hershey, Pa : IGI Global, 2005 8(2012), 4, Seite 82-107 Online-Ressource (DE-627)NLEJ244418896 (DE-600)2399996-2 1548-3932 nnns volume:8 year:2012 number:4 pages:82-107 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 8 2012 4 82-107 |
allfieldsGer |
10.4018/jdwm.2012100104 doi (DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 DE-627 ger DE-627 rakwb eng Wan, Renxia verfasserin aut Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes IGI Global InfoSci Journals Archive 2000 - 2012 C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means Gao, Yuelin author aut Li, Caixia author aut In International journal of data warehousing and mining Hershey, Pa : IGI Global, 2005 8(2012), 4, Seite 82-107 Online-Ressource (DE-627)NLEJ244418896 (DE-600)2399996-2 1548-3932 nnns volume:8 year:2012 number:4 pages:82-107 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 8 2012 4 82-107 |
allfieldsSound |
10.4018/jdwm.2012100104 doi (DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 DE-627 ger DE-627 rakwb eng Wan, Renxia verfasserin aut Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes IGI Global InfoSci Journals Archive 2000 - 2012 C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means Gao, Yuelin author aut Li, Caixia author aut In International journal of data warehousing and mining Hershey, Pa : IGI Global, 2005 8(2012), 4, Seite 82-107 Online-Ressource (DE-627)NLEJ244418896 (DE-600)2399996-2 1548-3932 nnns volume:8 year:2012 number:4 pages:82-107 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 8 2012 4 82-107 |
language |
English |
source |
In International journal of data warehousing and mining 8(2012), 4, Seite 82-107 volume:8 year:2012 number:4 pages:82-107 |
sourceStr |
In International journal of data warehousing and mining 8(2012), 4, Seite 82-107 volume:8 year:2012 number:4 pages:82-107 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means |
isfreeaccess_bool |
false |
container_title |
International journal of data warehousing and mining |
authorswithroles_txt_mv |
Wan, Renxia @@aut@@ Gao, Yuelin @@aut@@ Li, Caixia @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ244418896 |
id |
NLEJ244463018 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244463018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/jdwm.2012100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244463018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/jdwm.2012100104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wan, Renxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-Means</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy C-Means</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy Possibilitic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Data Set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted Cluster</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted Fuzzy-Possibilitic C-Means</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuelin</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Caixia</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of data warehousing and mining</subfield><subfield code="d">Hershey, Pa : IGI Global, 2005</subfield><subfield code="g">8(2012), 4, Seite 82-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244418896</subfield><subfield code="w">(DE-600)2399996-2</subfield><subfield code="x">1548-3932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:82-107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">82-107</subfield></datafield></record></collection>
|
series2 |
IGI Global InfoSci Journals Archive 2000 - 2012 |
author |
Wan, Renxia |
spellingShingle |
Wan, Renxia misc C-Means misc Fuzzy C-Means misc Fuzzy Possibilitic misc Large Data Set misc Weighted Cluster misc Weighted Fuzzy-Possibilitic C-Means Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
authorStr |
Wan, Renxia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ244418896 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1548-3932 |
topic_title |
Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets C-Means Fuzzy C-Means Fuzzy Possibilitic Large Data Set Weighted Cluster Weighted Fuzzy-Possibilitic C-Means |
topic |
misc C-Means misc Fuzzy C-Means misc Fuzzy Possibilitic misc Large Data Set misc Weighted Cluster misc Weighted Fuzzy-Possibilitic C-Means |
topic_unstemmed |
misc C-Means misc Fuzzy C-Means misc Fuzzy Possibilitic misc Large Data Set misc Weighted Cluster misc Weighted Fuzzy-Possibilitic C-Means |
topic_browse |
misc C-Means misc Fuzzy C-Means misc Fuzzy Possibilitic misc Large Data Set misc Weighted Cluster misc Weighted Fuzzy-Possibilitic C-Means |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
International journal of data warehousing and mining |
hierarchy_parent_id |
NLEJ244418896 |
hierarchy_top_title |
International journal of data warehousing and mining |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ244418896 (DE-600)2399996-2 |
title |
Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
ctrlnum |
(DE-627)NLEJ244463018 (VZGNL)10.4018/jdwm.2012100104 |
title_full |
Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
author_sort |
Wan, Renxia |
journal |
International journal of data warehousing and mining |
journalStr |
International journal of data warehousing and mining |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
zzz |
container_start_page |
82 |
author_browse |
Wan, Renxia Gao, Yuelin Li, Caixia |
container_volume |
8 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Wan, Renxia |
doi_str_mv |
10.4018/jdwm.2012100104 |
author2-role |
author |
title_sort |
weighted fuzzy-possibilistic c-means over large data sets |
title_auth |
Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
abstract |
Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes |
abstractGer |
Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes |
abstract_unstemmed |
Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes |
collection_details |
ZDB-1-GIS GBV_NL_ARTICLE |
container_issue |
4 |
title_short |
Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets |
url |
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true |
remote_bool |
true |
author2 |
Gao, Yuelin Li, Caixia |
author2Str |
Gao, Yuelin Li, Caixia |
ppnlink |
NLEJ244418896 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.4018/jdwm.2012100104 |
up_date |
2024-07-06T07:59:01.398Z |
_version_ |
1803815738566246400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244463018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/jdwm.2012100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244463018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/jdwm.2012100104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wan, Renxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Up to now, several algorithms for clustering large data sets have been presented. Most clustering approaches for data sets are the crisp ones, which cannot be well suitable to the fuzzy case. In this paper, the authors explore a single pass approach to fuzzy possibilistic clustering over large data set. The basic idea of the proposed approach (weighted fuzzy-possibilistic c-means, WFPCM) is to use a modified possibilistic c-means (PCM) algorithm to cluster the weighted data points and centroids with one data segment as a unit. Experimental results on both synthetic and real data sets show that WFPCM can save significant memory usage when comparing with the fuzzy c-means (FCM) algorithm and the possibilistic c-means (PCM) algorithm. Furthermore, the proposed algorithm is of an excellent immunity to noise and can avoid splitting or merging the exact clusters into some inaccurate clusters, and ensures the integrity and purity of the natural classes</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-Means</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy C-Means</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy Possibilitic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Data Set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted Cluster</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted Fuzzy-Possibilitic C-Means</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuelin</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Caixia</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of data warehousing and mining</subfield><subfield code="d">Hershey, Pa : IGI Global, 2005</subfield><subfield code="g">8(2012), 4, Seite 82-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244418896</subfield><subfield code="w">(DE-600)2399996-2</subfield><subfield code="x">1548-3932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:82-107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012100104&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">82-107</subfield></datafield></record></collection>
|
score |
7.4030848 |