Improved Parameterless K-Means : Auto-Generation Centroids and Distance Data Point Clusters

K-means is an unsupervised learning and partitioning clustering algorithm. It is popular and widely used for its simplicity and fastness. K-means clustering produce a number of separate flat (non-hierarchical) clusters and suitable for generating globular clusters. The main drawback of the k-means a...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Mohd, Wan Maseri Binti Wan [verfasserIn]

Beg, A.H. [author]

Herawan, Tutut [author]

Noraziah, A. [author]

Rabbi, K. F. [author]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2011

Schlagwörter:

Clustering

Clustering Process

Data Mining

K-Means Algorithm

Partitioning Clustering Algorithm

Umfang:

Online-Ressource

Reproduktion:

IGI Global InfoSci Journals Archive 2000 - 2012

Übergeordnetes Werk:

In: International journal of information retrieval research - Hershey, Pa : IGI Global, 2011, 1(2011), 3, Seite 1-14

Übergeordnetes Werk:

volume:1 ; year:2011 ; number:3 ; pages:1-14

Links:

Link aufrufen
Abstract

DOI / URN:

10.4018/ijirr.2011070101

Katalog-ID:

NLEJ244481202

Nicht das Richtige dabei?

Schreiben Sie uns!