An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory
To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by usin...
Ausführliche Beschreibung
Autor*in: |
Sun, Fuchun [verfasserIn] Chi, Yuhong [author] Wang, Weijun [author] Yu, Chunming [author] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Umfang: |
Online-Ressource |
---|
Reproduktion: |
IGI Global InfoSci Journals Archive 2000 - 2012 |
---|---|
Übergeordnetes Werk: |
In: International journal of software science and computational intelligence - Hershey, Pa : IGI Global, 2009, 4(2012), 2, Seite 1-13 |
Übergeordnetes Werk: |
volume:4 ; year:2012 ; number:2 ; pages:1-13 |
Links: |
---|
DOI / URN: |
10.4018/jssci.2012040101 |
---|
Katalog-ID: |
NLEJ244502064 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ244502064 | ||
003 | DE-627 | ||
005 | 20240202180240.0 | ||
007 | cr uuu---uuuuu | ||
008 | 150605s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4018/jssci.2012040101 |2 doi | |
035 | |a (DE-627)NLEJ244502064 | ||
035 | |a (VZGNL)10.4018/jssci.2012040101 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sun, Fuchun |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
264 | 1 | |c 2012 | |
300 | |a Online-Ressource | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods | ||
533 | |f IGI Global InfoSci Journals Archive 2000 - 2012 | ||
650 | 4 | |a Boundary Condition | |
650 | 4 | |a Particle Swarm Optimization | |
650 | 4 | |a Quotient Space | |
650 | 4 | |a Search Space | |
650 | 4 | |a Topology | |
700 | 1 | |a Chi, Yuhong |e author |4 aut | |
700 | 1 | |a Wang, Weijun |e author |4 aut | |
700 | 1 | |a Yu, Chunming |e author |4 oth | |
773 | 0 | 8 | |i In |t International journal of software science and computational intelligence |d Hershey, Pa : IGI Global, 2009 |g 4(2012), 2, Seite 1-13 |h Online-Ressource |w (DE-627)NLEJ244419531 |w (DE-600)2703774-5 |x 1942-9037 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2012 |g number:2 |g pages:1-13 |
856 | 4 | 0 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 |m X:IGIG |x Verlag |z Deutschlandweit zugänglich |
856 | 4 | 2 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true |q text/html |y Abstract |z Deutschlandweit zugänglich |
912 | |a ZDB-1-GIS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 4 |j 2012 |e 2 |h 1-13 |
author_variant |
f s fs y c yc w w ww c y cy |
---|---|
matchkey_str |
article:19429037:2012----::nmrvdatcewrotmztoagrtmaeo |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.4018/jssci.2012040101 doi (DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 DE-627 ger DE-627 rakwb eng Sun, Fuchun verfasserin aut An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods IGI Global InfoSci Journals Archive 2000 - 2012 Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology Chi, Yuhong author aut Wang, Weijun author aut Yu, Chunming author oth In International journal of software science and computational intelligence Hershey, Pa : IGI Global, 2009 4(2012), 2, Seite 1-13 Online-Ressource (DE-627)NLEJ244419531 (DE-600)2703774-5 1942-9037 nnns volume:4 year:2012 number:2 pages:1-13 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 4 2012 2 1-13 |
spelling |
10.4018/jssci.2012040101 doi (DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 DE-627 ger DE-627 rakwb eng Sun, Fuchun verfasserin aut An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods IGI Global InfoSci Journals Archive 2000 - 2012 Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology Chi, Yuhong author aut Wang, Weijun author aut Yu, Chunming author oth In International journal of software science and computational intelligence Hershey, Pa : IGI Global, 2009 4(2012), 2, Seite 1-13 Online-Ressource (DE-627)NLEJ244419531 (DE-600)2703774-5 1942-9037 nnns volume:4 year:2012 number:2 pages:1-13 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 4 2012 2 1-13 |
allfields_unstemmed |
10.4018/jssci.2012040101 doi (DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 DE-627 ger DE-627 rakwb eng Sun, Fuchun verfasserin aut An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods IGI Global InfoSci Journals Archive 2000 - 2012 Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology Chi, Yuhong author aut Wang, Weijun author aut Yu, Chunming author oth In International journal of software science and computational intelligence Hershey, Pa : IGI Global, 2009 4(2012), 2, Seite 1-13 Online-Ressource (DE-627)NLEJ244419531 (DE-600)2703774-5 1942-9037 nnns volume:4 year:2012 number:2 pages:1-13 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 4 2012 2 1-13 |
allfieldsGer |
10.4018/jssci.2012040101 doi (DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 DE-627 ger DE-627 rakwb eng Sun, Fuchun verfasserin aut An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods IGI Global InfoSci Journals Archive 2000 - 2012 Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology Chi, Yuhong author aut Wang, Weijun author aut Yu, Chunming author oth In International journal of software science and computational intelligence Hershey, Pa : IGI Global, 2009 4(2012), 2, Seite 1-13 Online-Ressource (DE-627)NLEJ244419531 (DE-600)2703774-5 1942-9037 nnns volume:4 year:2012 number:2 pages:1-13 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 4 2012 2 1-13 |
allfieldsSound |
10.4018/jssci.2012040101 doi (DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 DE-627 ger DE-627 rakwb eng Sun, Fuchun verfasserin aut An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory 2012 Online-Ressource nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods IGI Global InfoSci Journals Archive 2000 - 2012 Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology Chi, Yuhong author aut Wang, Weijun author aut Yu, Chunming author oth In International journal of software science and computational intelligence Hershey, Pa : IGI Global, 2009 4(2012), 2, Seite 1-13 Online-Ressource (DE-627)NLEJ244419531 (DE-600)2703774-5 1942-9037 nnns volume:4 year:2012 number:2 pages:1-13 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true text/html Abstract Deutschlandweit zugänglich ZDB-1-GIS GBV_NL_ARTICLE AR 4 2012 2 1-13 |
language |
English |
source |
In International journal of software science and computational intelligence 4(2012), 2, Seite 1-13 volume:4 year:2012 number:2 pages:1-13 |
sourceStr |
In International journal of software science and computational intelligence 4(2012), 2, Seite 1-13 volume:4 year:2012 number:2 pages:1-13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology |
isfreeaccess_bool |
false |
container_title |
International journal of software science and computational intelligence |
authorswithroles_txt_mv |
Sun, Fuchun @@aut@@ Chi, Yuhong @@aut@@ Wang, Weijun @@aut@@ Yu, Chunming @@oth@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ244419531 |
id |
NLEJ244502064 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244502064</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180240.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/jssci.2012040101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244502064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/jssci.2012040101</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Swarm Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, Yuhong</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weijun</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Chunming</subfield><subfield code="e">author</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of software science and computational intelligence</subfield><subfield code="d">Hershey, Pa : IGI Global, 2009</subfield><subfield code="g">4(2012), 2, Seite 1-13</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244419531</subfield><subfield code="w">(DE-600)2703774-5</subfield><subfield code="x">1942-9037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2012</subfield><subfield code="e">2</subfield><subfield code="h">1-13</subfield></datafield></record></collection>
|
series2 |
IGI Global InfoSci Journals Archive 2000 - 2012 |
author |
Sun, Fuchun |
spellingShingle |
Sun, Fuchun misc Boundary Condition misc Particle Swarm Optimization misc Quotient Space misc Search Space misc Topology An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
authorStr |
Sun, Fuchun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ244419531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut oth |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1942-9037 |
topic_title |
An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory Boundary Condition Particle Swarm Optimization Quotient Space Search Space Topology |
topic |
misc Boundary Condition misc Particle Swarm Optimization misc Quotient Space misc Search Space misc Topology |
topic_unstemmed |
misc Boundary Condition misc Particle Swarm Optimization misc Quotient Space misc Search Space misc Topology |
topic_browse |
misc Boundary Condition misc Particle Swarm Optimization misc Quotient Space misc Search Space misc Topology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c y cy |
hierarchy_parent_title |
International journal of software science and computational intelligence |
hierarchy_parent_id |
NLEJ244419531 |
hierarchy_top_title |
International journal of software science and computational intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ244419531 (DE-600)2703774-5 |
title |
An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
ctrlnum |
(DE-627)NLEJ244502064 (VZGNL)10.4018/jssci.2012040101 |
title_full |
An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
author_sort |
Sun, Fuchun |
journal |
International journal of software science and computational intelligence |
journalStr |
International journal of software science and computational intelligence |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Sun, Fuchun Chi, Yuhong Wang, Weijun |
container_volume |
4 |
physical |
Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Fuchun |
doi_str_mv |
10.4018/jssci.2012040101 |
author2-role |
author |
title_sort |
improved particle swarm optimization algorithm based on quotient space theory |
title_auth |
An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
abstract |
To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods |
abstractGer |
To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods |
abstract_unstemmed |
To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods |
collection_details |
ZDB-1-GIS GBV_NL_ARTICLE |
container_issue |
2 |
title_short |
An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory |
url |
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true |
remote_bool |
true |
author2 |
Chi, Yuhong Wang, Weijun Yu, Chunming |
author2Str |
Chi, Yuhong Wang, Weijun Yu, Chunming |
ppnlink |
NLEJ244419531 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.4018/jssci.2012040101 |
up_date |
2024-07-06T08:06:36.862Z |
_version_ |
1803816216154865664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ244502064</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240202180240.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">150605s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/jssci.2012040101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ244502064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/jssci.2012040101</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Improved Particle Swarm Optimization Algorithm Based on Quotient Space Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">IGI Global InfoSci Journals Archive 2000 - 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Swarm Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, Yuhong</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weijun</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Chunming</subfield><subfield code="e">author</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International journal of software science and computational intelligence</subfield><subfield code="d">Hershey, Pa : IGI Global, 2009</subfield><subfield code="g">4(2012), 2, Seite 1-13</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244419531</subfield><subfield code="w">(DE-600)2703774-5</subfield><subfield code="x">1942-9037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jssci.2012040101&buylink=true</subfield><subfield code="q">text/html</subfield><subfield code="y">Abstract</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2012</subfield><subfield code="e">2</subfield><subfield code="h">1-13</subfield></datafield></record></collection>
|
score |
7.3998547 |