Adaptive application of the operator exponential
In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algori...
Ausführliche Beschreibung
Autor*in: |
Jürgens, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Genthiner Strasse 1310875 BerlinGermany: Walter de Gruyter ; 2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
Copyright 2006, Walter de Gruyter |
---|---|
Umfang: |
30 |
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Journal of numerical mathematics - Berlin : de Gruyter, 2002, 14, 3, Seite 217-246 |
Übergeordnetes Werk: |
volume:14 ; number:3 ; pages:217-246 ; extent:30 |
Links: |
---|
DOI / URN: |
10.1515/156939506778658311 |
---|
Katalog-ID: |
NLEJ246225637 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ246225637 | ||
003 | DE-627 | ||
005 | 20220820021501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2006 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/156939506778658311 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ246225637 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Jürgens, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive application of the operator exponential |
264 | 1 | |a Genthiner Strasse 1310875 BerlinGermany |b Walter de Gruyter |c 2006 | |
300 | |a 30 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Copyright 2006, Walter de Gruyter | ||
520 | |a In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a operator exponential, | |
650 | 4 | |a approximation, | |
650 | 4 | |a Besov regularity, | |
650 | 4 | |a complexity | |
773 | 0 | 8 | |i Enthalten in |t Journal of numerical mathematics |d Berlin : de Gruyter, 2002 |g 14, 3, Seite 217-246 |w (DE-627)NLEJ248236172 |w (DE-600)2095674-5 |x 1569-3953 |7 nnns |
773 | 1 | 8 | |g volume:14 |g number:3 |g pages:217-246 |g extent:30 |
856 | 4 | 0 | |u https://doi.org/10.1515/156939506778658311 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 14 |e 3 |h 217-246 |g 30 |
author_variant |
m j mj |
---|---|
matchkey_str |
article:15693953:2006----::dpieplctooteprt |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1515/156939506778658311 doi artikel_Grundlieferung.pp (DE-627)NLEJ246225637 DE-627 ger DE-627 rakwb Jürgens, M. verfasserin aut Adaptive application of the operator exponential Genthiner Strasse 1310875 BerlinGermany Walter de Gruyter 2006 30 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Copyright 2006, Walter de Gruyter In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Walter de Gruyter Online Zeitschriften operator exponential, approximation, Besov regularity, complexity Enthalten in Journal of numerical mathematics Berlin : de Gruyter, 2002 14, 3, Seite 217-246 (DE-627)NLEJ248236172 (DE-600)2095674-5 1569-3953 nnns volume:14 number:3 pages:217-246 extent:30 https://doi.org/10.1515/156939506778658311 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 3 217-246 30 |
spelling |
10.1515/156939506778658311 doi artikel_Grundlieferung.pp (DE-627)NLEJ246225637 DE-627 ger DE-627 rakwb Jürgens, M. verfasserin aut Adaptive application of the operator exponential Genthiner Strasse 1310875 BerlinGermany Walter de Gruyter 2006 30 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Copyright 2006, Walter de Gruyter In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Walter de Gruyter Online Zeitschriften operator exponential, approximation, Besov regularity, complexity Enthalten in Journal of numerical mathematics Berlin : de Gruyter, 2002 14, 3, Seite 217-246 (DE-627)NLEJ248236172 (DE-600)2095674-5 1569-3953 nnns volume:14 number:3 pages:217-246 extent:30 https://doi.org/10.1515/156939506778658311 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 3 217-246 30 |
allfields_unstemmed |
10.1515/156939506778658311 doi artikel_Grundlieferung.pp (DE-627)NLEJ246225637 DE-627 ger DE-627 rakwb Jürgens, M. verfasserin aut Adaptive application of the operator exponential Genthiner Strasse 1310875 BerlinGermany Walter de Gruyter 2006 30 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Copyright 2006, Walter de Gruyter In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Walter de Gruyter Online Zeitschriften operator exponential, approximation, Besov regularity, complexity Enthalten in Journal of numerical mathematics Berlin : de Gruyter, 2002 14, 3, Seite 217-246 (DE-627)NLEJ248236172 (DE-600)2095674-5 1569-3953 nnns volume:14 number:3 pages:217-246 extent:30 https://doi.org/10.1515/156939506778658311 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 3 217-246 30 |
allfieldsGer |
10.1515/156939506778658311 doi artikel_Grundlieferung.pp (DE-627)NLEJ246225637 DE-627 ger DE-627 rakwb Jürgens, M. verfasserin aut Adaptive application of the operator exponential Genthiner Strasse 1310875 BerlinGermany Walter de Gruyter 2006 30 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Copyright 2006, Walter de Gruyter In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Walter de Gruyter Online Zeitschriften operator exponential, approximation, Besov regularity, complexity Enthalten in Journal of numerical mathematics Berlin : de Gruyter, 2002 14, 3, Seite 217-246 (DE-627)NLEJ248236172 (DE-600)2095674-5 1569-3953 nnns volume:14 number:3 pages:217-246 extent:30 https://doi.org/10.1515/156939506778658311 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 3 217-246 30 |
allfieldsSound |
10.1515/156939506778658311 doi artikel_Grundlieferung.pp (DE-627)NLEJ246225637 DE-627 ger DE-627 rakwb Jürgens, M. verfasserin aut Adaptive application of the operator exponential Genthiner Strasse 1310875 BerlinGermany Walter de Gruyter 2006 30 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Copyright 2006, Walter de Gruyter In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Walter de Gruyter Online Zeitschriften operator exponential, approximation, Besov regularity, complexity Enthalten in Journal of numerical mathematics Berlin : de Gruyter, 2002 14, 3, Seite 217-246 (DE-627)NLEJ248236172 (DE-600)2095674-5 1569-3953 nnns volume:14 number:3 pages:217-246 extent:30 https://doi.org/10.1515/156939506778658311 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 3 217-246 30 |
source |
Enthalten in Journal of numerical mathematics 14, 3, Seite 217-246 volume:14 number:3 pages:217-246 extent:30 |
sourceStr |
Enthalten in Journal of numerical mathematics 14, 3, Seite 217-246 volume:14 number:3 pages:217-246 extent:30 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
operator exponential, approximation, Besov regularity, complexity |
isfreeaccess_bool |
false |
container_title |
Journal of numerical mathematics |
authorswithroles_txt_mv |
Jürgens, M. @@aut@@ |
publishDateDaySort_date |
2006-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ248236172 |
id |
NLEJ246225637 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246225637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820021501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2006 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/156939506778658311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246225637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jürgens, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive application of the operator exponential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Genthiner Strasse 1310875 BerlinGermany</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Copyright 2006, Walter de Gruyter</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operator exponential,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Besov regularity,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complexity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of numerical mathematics</subfield><subfield code="d">Berlin : de Gruyter, 2002</subfield><subfield code="g">14, 3, Seite 217-246</subfield><subfield code="w">(DE-627)NLEJ248236172</subfield><subfield code="w">(DE-600)2095674-5</subfield><subfield code="x">1569-3953</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:217-246</subfield><subfield code="g">extent:30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/156939506778658311</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="e">3</subfield><subfield code="h">217-246</subfield><subfield code="g">30</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Jürgens, M. |
spellingShingle |
Jürgens, M. misc operator exponential, misc approximation, misc Besov regularity, misc complexity Adaptive application of the operator exponential |
authorStr |
Jürgens, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248236172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
NL |
publishPlace |
Genthiner Strasse 1310875 BerlinGermany |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1569-3953 |
topic_title |
Adaptive application of the operator exponential operator exponential approximation Besov regularity complexity |
publisher |
Walter de Gruyter |
publisherStr |
Walter de Gruyter |
topic |
misc operator exponential, misc approximation, misc Besov regularity, misc complexity |
topic_unstemmed |
misc operator exponential, misc approximation, misc Besov regularity, misc complexity |
topic_browse |
misc operator exponential, misc approximation, misc Besov regularity, misc complexity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of numerical mathematics |
hierarchy_parent_id |
NLEJ248236172 |
hierarchy_top_title |
Journal of numerical mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248236172 (DE-600)2095674-5 |
title |
Adaptive application of the operator exponential |
ctrlnum |
(DE-627)NLEJ246225637 |
title_full |
Adaptive application of the operator exponential |
author_sort |
Jürgens, M. |
journal |
Journal of numerical mathematics |
journalStr |
Journal of numerical mathematics |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
217 |
author_browse |
Jürgens, M. |
container_volume |
14 |
physical |
30 |
format_se |
Elektronische Aufsätze |
author-letter |
Jürgens, M. |
doi_str_mv |
10.1515/156939506778658311 |
title_sort |
adaptive application of the operator exponential |
title_auth |
Adaptive application of the operator exponential |
abstract |
In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Copyright 2006, Walter de Gruyter |
abstractGer |
In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Copyright 2006, Walter de Gruyter |
abstract_unstemmed |
In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order. Copyright 2006, Walter de Gruyter |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
3 |
title_short |
Adaptive application of the operator exponential |
url |
https://doi.org/10.1515/156939506778658311 |
remote_bool |
true |
ppnlink |
NLEJ248236172 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/156939506778658311 |
up_date |
2024-07-06T08:12:00.584Z |
_version_ |
1803816555601985536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246225637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820021501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2006 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/156939506778658311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246225637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jürgens, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive application of the operator exponential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Genthiner Strasse 1310875 BerlinGermany</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Copyright 2006, Walter de Gruyter</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article an inherently parallel algorithm to approximate the operator exponential is presented. The construction is based on the integral representation of the operator exponential and allows arbitrarily large time steps constituting a major advantage compared to classical schemes. The algorithm rests on the efficient solution of several elliptic problems depending on a complex parameter. We prove Besov regularity of the solutions to these elliptic problems. This result implies the efficiency of adaptive methods applied to the elliptic problems and leads to a complexity estimate for the complete algorithm. In the numerical experiments the efficiency of the new scheme is demonstrated by comparison to a single step method of second order.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operator exponential,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Besov regularity,</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complexity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of numerical mathematics</subfield><subfield code="d">Berlin : de Gruyter, 2002</subfield><subfield code="g">14, 3, Seite 217-246</subfield><subfield code="w">(DE-627)NLEJ248236172</subfield><subfield code="w">(DE-600)2095674-5</subfield><subfield code="x">1569-3953</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:217-246</subfield><subfield code="g">extent:30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/156939506778658311</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="e">3</subfield><subfield code="h">217-246</subfield><subfield code="g">30</subfield></datafield></record></collection>
|
score |
7.4008694 |