A class of degenerate elliptic eigenvalue problems
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a seq...
Ausführliche Beschreibung
Autor*in: |
Lucia, Marcello [verfasserIn] Schuricht, Friedemann [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH ; 2013 |
---|
Schlagwörter: |
---|
Umfang: |
35 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Advances in nonlinear analysis - Berlin : de Gruyter, 2012, 2(2013), 1 vom: 01. Feb., Seite 91-125 |
Übergeordnetes Werk: |
volume:2 ; year:2013 ; number:1 ; day:01 ; month:02 ; pages:91-125 ; extent:35 |
Links: |
---|
DOI / URN: |
10.1515/anona-2012-0202 |
---|
Katalog-ID: |
NLEJ246429321 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ246429321 | ||
003 | DE-627 | ||
005 | 20220820022351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2013 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/anona-2012-0202 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ246429321 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Lucia, Marcello |e verfasserin |4 aut | |
245 | 1 | 0 | |a A class of degenerate elliptic eigenvalue problems |
264 | 1 | |b Walter de Gruyter GmbH |c 2013 | |
300 | |a 35 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a Nonlinear eigenvalue problems | |
650 | 4 | |a quasilinear elliptic equations | |
650 | 4 | |a critical point theory | |
650 | 4 | |a convex analysis | |
650 | 4 | |a nonsmooth analysis | |
700 | 1 | |a Schuricht, Friedemann |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in nonlinear analysis |d Berlin : de Gruyter, 2012 |g 2(2013), 1 vom: 01. Feb., Seite 91-125 |w (DE-627)NLEJ248235001 |w (DE-600)2645915-2 |x 2191-950X |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2013 |g number:1 |g day:01 |g month:02 |g pages:91-125 |g extent:35 |
856 | 4 | 0 | |u https://doi.org/10.1515/anona-2012-0202 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 2 |j 2013 |e 1 |b 01 |c 02 |h 91-125 |g 35 |
author_variant |
m l ml f s fs |
---|---|
matchkey_str |
article:2191950X:2013----::casfeeeaelitciev |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1515/anona-2012-0202 doi artikel_Grundlieferung.pp (DE-627)NLEJ246429321 DE-627 ger DE-627 rakwb Lucia, Marcello verfasserin aut A class of degenerate elliptic eigenvalue problems Walter de Gruyter GmbH 2013 35 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. Walter de Gruyter Online Zeitschriften Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis Schuricht, Friedemann verfasserin aut Enthalten in Advances in nonlinear analysis Berlin : de Gruyter, 2012 2(2013), 1 vom: 01. Feb., Seite 91-125 (DE-627)NLEJ248235001 (DE-600)2645915-2 2191-950X nnns volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 https://doi.org/10.1515/anona-2012-0202 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 2 2013 1 01 02 91-125 35 |
spelling |
10.1515/anona-2012-0202 doi artikel_Grundlieferung.pp (DE-627)NLEJ246429321 DE-627 ger DE-627 rakwb Lucia, Marcello verfasserin aut A class of degenerate elliptic eigenvalue problems Walter de Gruyter GmbH 2013 35 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. Walter de Gruyter Online Zeitschriften Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis Schuricht, Friedemann verfasserin aut Enthalten in Advances in nonlinear analysis Berlin : de Gruyter, 2012 2(2013), 1 vom: 01. Feb., Seite 91-125 (DE-627)NLEJ248235001 (DE-600)2645915-2 2191-950X nnns volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 https://doi.org/10.1515/anona-2012-0202 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 2 2013 1 01 02 91-125 35 |
allfields_unstemmed |
10.1515/anona-2012-0202 doi artikel_Grundlieferung.pp (DE-627)NLEJ246429321 DE-627 ger DE-627 rakwb Lucia, Marcello verfasserin aut A class of degenerate elliptic eigenvalue problems Walter de Gruyter GmbH 2013 35 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. Walter de Gruyter Online Zeitschriften Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis Schuricht, Friedemann verfasserin aut Enthalten in Advances in nonlinear analysis Berlin : de Gruyter, 2012 2(2013), 1 vom: 01. Feb., Seite 91-125 (DE-627)NLEJ248235001 (DE-600)2645915-2 2191-950X nnns volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 https://doi.org/10.1515/anona-2012-0202 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 2 2013 1 01 02 91-125 35 |
allfieldsGer |
10.1515/anona-2012-0202 doi artikel_Grundlieferung.pp (DE-627)NLEJ246429321 DE-627 ger DE-627 rakwb Lucia, Marcello verfasserin aut A class of degenerate elliptic eigenvalue problems Walter de Gruyter GmbH 2013 35 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. Walter de Gruyter Online Zeitschriften Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis Schuricht, Friedemann verfasserin aut Enthalten in Advances in nonlinear analysis Berlin : de Gruyter, 2012 2(2013), 1 vom: 01. Feb., Seite 91-125 (DE-627)NLEJ248235001 (DE-600)2645915-2 2191-950X nnns volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 https://doi.org/10.1515/anona-2012-0202 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 2 2013 1 01 02 91-125 35 |
allfieldsSound |
10.1515/anona-2012-0202 doi artikel_Grundlieferung.pp (DE-627)NLEJ246429321 DE-627 ger DE-627 rakwb Lucia, Marcello verfasserin aut A class of degenerate elliptic eigenvalue problems Walter de Gruyter GmbH 2013 35 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. Walter de Gruyter Online Zeitschriften Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis Schuricht, Friedemann verfasserin aut Enthalten in Advances in nonlinear analysis Berlin : de Gruyter, 2012 2(2013), 1 vom: 01. Feb., Seite 91-125 (DE-627)NLEJ248235001 (DE-600)2645915-2 2191-950X nnns volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 https://doi.org/10.1515/anona-2012-0202 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 2 2013 1 01 02 91-125 35 |
source |
Enthalten in Advances in nonlinear analysis 2(2013), 1 vom: 01. Feb., Seite 91-125 volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 |
sourceStr |
Enthalten in Advances in nonlinear analysis 2(2013), 1 vom: 01. Feb., Seite 91-125 volume:2 year:2013 number:1 day:01 month:02 pages:91-125 extent:35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis |
isfreeaccess_bool |
false |
container_title |
Advances in nonlinear analysis |
authorswithroles_txt_mv |
Lucia, Marcello @@aut@@ Schuricht, Friedemann @@aut@@ |
publishDateDaySort_date |
2013-02-01T00:00:00Z |
hierarchy_top_id |
NLEJ248235001 |
id |
NLEJ246429321 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246429321</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820022351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/anona-2012-0202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246429321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A class of degenerate elliptic eigenvalue problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">35</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear eigenvalue problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasilinear elliptic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">critical point theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonsmooth analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuricht, Friedemann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in nonlinear analysis</subfield><subfield code="d">Berlin : de Gruyter, 2012</subfield><subfield code="g">2(2013), 1 vom: 01. Feb., Seite 91-125</subfield><subfield code="w">(DE-627)NLEJ248235001</subfield><subfield code="w">(DE-600)2645915-2</subfield><subfield code="x">2191-950X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:91-125</subfield><subfield code="g">extent:35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/anona-2012-0202</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">91-125</subfield><subfield code="g">35</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Lucia, Marcello |
spellingShingle |
Lucia, Marcello misc Nonlinear eigenvalue problems misc quasilinear elliptic equations misc critical point theory misc convex analysis misc nonsmooth analysis A class of degenerate elliptic eigenvalue problems |
authorStr |
Lucia, Marcello |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248235001 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2191-950X |
topic_title |
A class of degenerate elliptic eigenvalue problems Nonlinear eigenvalue problems quasilinear elliptic equations critical point theory convex analysis nonsmooth analysis |
publisher |
Walter de Gruyter GmbH |
publisherStr |
Walter de Gruyter GmbH |
topic |
misc Nonlinear eigenvalue problems misc quasilinear elliptic equations misc critical point theory misc convex analysis misc nonsmooth analysis |
topic_unstemmed |
misc Nonlinear eigenvalue problems misc quasilinear elliptic equations misc critical point theory misc convex analysis misc nonsmooth analysis |
topic_browse |
misc Nonlinear eigenvalue problems misc quasilinear elliptic equations misc critical point theory misc convex analysis misc nonsmooth analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in nonlinear analysis |
hierarchy_parent_id |
NLEJ248235001 |
hierarchy_top_title |
Advances in nonlinear analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248235001 (DE-600)2645915-2 |
title |
A class of degenerate elliptic eigenvalue problems |
ctrlnum |
(DE-627)NLEJ246429321 |
title_full |
A class of degenerate elliptic eigenvalue problems |
author_sort |
Lucia, Marcello |
journal |
Advances in nonlinear analysis |
journalStr |
Advances in nonlinear analysis |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
91 |
author_browse |
Lucia, Marcello Schuricht, Friedemann |
container_volume |
2 |
physical |
35 |
format_se |
Elektronische Aufsätze |
author-letter |
Lucia, Marcello |
doi_str_mv |
10.1515/anona-2012-0202 |
author2-role |
verfasserin |
title_sort |
a class of degenerate elliptic eigenvalue problems |
title_auth |
A class of degenerate elliptic eigenvalue problems |
abstract |
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. |
abstractGer |
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. |
abstract_unstemmed |
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
1 |
title_short |
A class of degenerate elliptic eigenvalue problems |
url |
https://doi.org/10.1515/anona-2012-0202 |
remote_bool |
true |
author2 |
Schuricht, Friedemann |
author2Str |
Schuricht, Friedemann |
ppnlink |
NLEJ248235001 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/anona-2012-0202 |
up_date |
2024-07-06T08:31:38.919Z |
_version_ |
1803817791174737920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246429321</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820022351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/anona-2012-0202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246429321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A class of degenerate elliptic eigenvalue problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">35</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear eigenvalue problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasilinear elliptic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">critical point theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonsmooth analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuricht, Friedemann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in nonlinear analysis</subfield><subfield code="d">Berlin : de Gruyter, 2012</subfield><subfield code="g">2(2013), 1 vom: 01. Feb., Seite 91-125</subfield><subfield code="w">(DE-627)NLEJ248235001</subfield><subfield code="w">(DE-600)2645915-2</subfield><subfield code="x">2191-950X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:91-125</subfield><subfield code="g">extent:35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/anona-2012-0202</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">91-125</subfield><subfield code="g">35</subfield></datafield></record></collection>
|
score |
7.399987 |