Biological targeting with nanoparticles: state of the art
Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical e...
Ausführliche Beschreibung
Autor*in: |
Kozlova, Diana [verfasserIn] Epple, Matthias [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
De Gruyter ; 2013 |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: BioNanoMaterials - Berlin : de Gruyter, 2012, 14(2013), 3-4 vom: 05. Dez., Seite 161-170 |
Übergeordnetes Werk: |
volume:14 ; year:2013 ; number:3-4 ; day:05 ; month:12 ; pages:161-170 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1515/bnm-2013-0020 |
---|
Katalog-ID: |
NLEJ246646519 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ246646519 | ||
003 | DE-627 | ||
005 | 20230505195029.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2013 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/bnm-2013-0020 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ246646519 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Kozlova, Diana |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biological targeting with nanoparticles: state of the art |
264 | 1 | |b De Gruyter |c 2013 | |
300 | |a 10 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a antibodies | |
650 | 4 | |a bioconjugation | |
650 | 4 | |a cell targeting | |
650 | 4 | |a nanomedicine | |
650 | 4 | |a surface modification | |
700 | 1 | |a Epple, Matthias |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BioNanoMaterials |d Berlin : de Gruyter, 2012 |g 14(2013), 3-4 vom: 05. Dez., Seite 161-170 |w (DE-627)NLEJ248235133 |w (DE-600)2653986-X |x 2193-066X |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2013 |g number:3-4 |g day:05 |g month:12 |g pages:161-170 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1515/bnm-2013-0020 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 14 |j 2013 |e 3-4 |b 05 |c 12 |h 161-170 |g 10 |
author_variant |
d k dk m e me |
---|---|
matchkey_str |
article:2193066X:2013----::ilgclagtnwtnnprils |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1515/bnm-2013-0020 doi artikel_Grundlieferung.pp (DE-627)NLEJ246646519 DE-627 ger DE-627 rakwb Kozlova, Diana verfasserin aut Biological targeting with nanoparticles: state of the art De Gruyter 2013 10 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. Walter de Gruyter Online Zeitschriften antibodies bioconjugation cell targeting nanomedicine surface modification Epple, Matthias verfasserin aut Enthalten in BioNanoMaterials Berlin : de Gruyter, 2012 14(2013), 3-4 vom: 05. Dez., Seite 161-170 (DE-627)NLEJ248235133 (DE-600)2653986-X 2193-066X nnns volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 https://doi.org/10.1515/bnm-2013-0020 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2013 3-4 05 12 161-170 10 |
spelling |
10.1515/bnm-2013-0020 doi artikel_Grundlieferung.pp (DE-627)NLEJ246646519 DE-627 ger DE-627 rakwb Kozlova, Diana verfasserin aut Biological targeting with nanoparticles: state of the art De Gruyter 2013 10 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. Walter de Gruyter Online Zeitschriften antibodies bioconjugation cell targeting nanomedicine surface modification Epple, Matthias verfasserin aut Enthalten in BioNanoMaterials Berlin : de Gruyter, 2012 14(2013), 3-4 vom: 05. Dez., Seite 161-170 (DE-627)NLEJ248235133 (DE-600)2653986-X 2193-066X nnns volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 https://doi.org/10.1515/bnm-2013-0020 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2013 3-4 05 12 161-170 10 |
allfields_unstemmed |
10.1515/bnm-2013-0020 doi artikel_Grundlieferung.pp (DE-627)NLEJ246646519 DE-627 ger DE-627 rakwb Kozlova, Diana verfasserin aut Biological targeting with nanoparticles: state of the art De Gruyter 2013 10 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. Walter de Gruyter Online Zeitschriften antibodies bioconjugation cell targeting nanomedicine surface modification Epple, Matthias verfasserin aut Enthalten in BioNanoMaterials Berlin : de Gruyter, 2012 14(2013), 3-4 vom: 05. Dez., Seite 161-170 (DE-627)NLEJ248235133 (DE-600)2653986-X 2193-066X nnns volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 https://doi.org/10.1515/bnm-2013-0020 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2013 3-4 05 12 161-170 10 |
allfieldsGer |
10.1515/bnm-2013-0020 doi artikel_Grundlieferung.pp (DE-627)NLEJ246646519 DE-627 ger DE-627 rakwb Kozlova, Diana verfasserin aut Biological targeting with nanoparticles: state of the art De Gruyter 2013 10 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. Walter de Gruyter Online Zeitschriften antibodies bioconjugation cell targeting nanomedicine surface modification Epple, Matthias verfasserin aut Enthalten in BioNanoMaterials Berlin : de Gruyter, 2012 14(2013), 3-4 vom: 05. Dez., Seite 161-170 (DE-627)NLEJ248235133 (DE-600)2653986-X 2193-066X nnns volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 https://doi.org/10.1515/bnm-2013-0020 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2013 3-4 05 12 161-170 10 |
allfieldsSound |
10.1515/bnm-2013-0020 doi artikel_Grundlieferung.pp (DE-627)NLEJ246646519 DE-627 ger DE-627 rakwb Kozlova, Diana verfasserin aut Biological targeting with nanoparticles: state of the art De Gruyter 2013 10 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. Walter de Gruyter Online Zeitschriften antibodies bioconjugation cell targeting nanomedicine surface modification Epple, Matthias verfasserin aut Enthalten in BioNanoMaterials Berlin : de Gruyter, 2012 14(2013), 3-4 vom: 05. Dez., Seite 161-170 (DE-627)NLEJ248235133 (DE-600)2653986-X 2193-066X nnns volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 https://doi.org/10.1515/bnm-2013-0020 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2013 3-4 05 12 161-170 10 |
source |
Enthalten in BioNanoMaterials 14(2013), 3-4 vom: 05. Dez., Seite 161-170 volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 |
sourceStr |
Enthalten in BioNanoMaterials 14(2013), 3-4 vom: 05. Dez., Seite 161-170 volume:14 year:2013 number:3-4 day:05 month:12 pages:161-170 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
antibodies bioconjugation cell targeting nanomedicine surface modification |
isfreeaccess_bool |
false |
container_title |
BioNanoMaterials |
authorswithroles_txt_mv |
Kozlova, Diana @@aut@@ Epple, Matthias @@aut@@ |
publishDateDaySort_date |
2013-12-05T00:00:00Z |
hierarchy_top_id |
NLEJ248235133 |
id |
NLEJ246646519 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246646519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505195029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/bnm-2013-0020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246646519</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kozlova, Diana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biological targeting with nanoparticles: state of the art</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioconjugation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell targeting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanomedicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface modification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Epple, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BioNanoMaterials</subfield><subfield code="d">Berlin : de Gruyter, 2012</subfield><subfield code="g">14(2013), 3-4 vom: 05. Dez., Seite 161-170</subfield><subfield code="w">(DE-627)NLEJ248235133</subfield><subfield code="w">(DE-600)2653986-X</subfield><subfield code="x">2193-066X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:161-170</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/bnm-2013-0020</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">3-4</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield><subfield code="h">161-170</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Kozlova, Diana |
spellingShingle |
Kozlova, Diana misc antibodies misc bioconjugation misc cell targeting misc nanomedicine misc surface modification Biological targeting with nanoparticles: state of the art |
authorStr |
Kozlova, Diana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248235133 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2193-066X |
topic_title |
Biological targeting with nanoparticles: state of the art antibodies bioconjugation cell targeting nanomedicine surface modification |
publisher |
De Gruyter |
publisherStr |
De Gruyter |
topic |
misc antibodies misc bioconjugation misc cell targeting misc nanomedicine misc surface modification |
topic_unstemmed |
misc antibodies misc bioconjugation misc cell targeting misc nanomedicine misc surface modification |
topic_browse |
misc antibodies misc bioconjugation misc cell targeting misc nanomedicine misc surface modification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BioNanoMaterials |
hierarchy_parent_id |
NLEJ248235133 |
hierarchy_top_title |
BioNanoMaterials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248235133 (DE-600)2653986-X |
title |
Biological targeting with nanoparticles: state of the art |
ctrlnum |
(DE-627)NLEJ246646519 |
title_full |
Biological targeting with nanoparticles: state of the art |
author_sort |
Kozlova, Diana |
journal |
BioNanoMaterials |
journalStr |
BioNanoMaterials |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
161 |
author_browse |
Kozlova, Diana Epple, Matthias |
container_volume |
14 |
physical |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Kozlova, Diana |
doi_str_mv |
10.1515/bnm-2013-0020 |
author2-role |
verfasserin |
title_sort |
biological targeting with nanoparticles: state of the art |
title_auth |
Biological targeting with nanoparticles: state of the art |
abstract |
Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. |
abstractGer |
Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. |
abstract_unstemmed |
Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
3-4 |
title_short |
Biological targeting with nanoparticles: state of the art |
url |
https://doi.org/10.1515/bnm-2013-0020 |
remote_bool |
true |
author2 |
Epple, Matthias |
author2Str |
Epple, Matthias |
ppnlink |
NLEJ248235133 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/bnm-2013-0020 |
up_date |
2024-07-06T08:59:03.867Z |
_version_ |
1803819516030877696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246646519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505195029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/bnm-2013-0020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246646519</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kozlova, Diana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biological targeting with nanoparticles: state of the art</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioconjugation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell targeting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanomedicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface modification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Epple, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BioNanoMaterials</subfield><subfield code="d">Berlin : de Gruyter, 2012</subfield><subfield code="g">14(2013), 3-4 vom: 05. Dez., Seite 161-170</subfield><subfield code="w">(DE-627)NLEJ248235133</subfield><subfield code="w">(DE-600)2653986-X</subfield><subfield code="x">2193-066X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:161-170</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/bnm-2013-0020</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">3-4</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield><subfield code="h">161-170</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.4019136 |