Some Aspects of Discrete Hazard Rate Function in Telescopic Families
In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditi...
Ausführliche Beschreibung
Autor*in: |
Roknabadi, A. H. Rezaei [verfasserIn] Borzadaran, G. R. Mohtashami [verfasserIn] Khorashadizadeh, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH & Co. KG ; 2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Heldermann Verlag |
---|---|
Umfang: |
8 |
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Economic quality control - Berlin : De Gruyter, 2001, 24(2010), 1 vom: 15. März, Seite 35-42 |
Übergeordnetes Werk: |
volume:24 ; year:2010 ; number:1 ; day:15 ; month:03 ; pages:35-42 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1515/EQC.2009.35 |
---|
Katalog-ID: |
NLEJ246833416 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ246833416 | ||
003 | DE-627 | ||
005 | 20220820024616.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2010 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/EQC.2009.35 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ246833416 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Roknabadi, A. H. Rezaei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
264 | 1 | |b Walter de Gruyter GmbH & Co. KG |c 2010 | |
300 | |a 8 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Heldermann Verlag | ||
520 | |a In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a Extended exponential distribution | |
650 | 4 | |a reversed hazard rate | |
650 | 4 | |a second hazard rate | |
650 | 4 | |a mean residual life | |
700 | 1 | |a Borzadaran, G. R. Mohtashami |e verfasserin |4 aut | |
700 | 1 | |a Khorashadizadeh, M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Economic quality control |d Berlin : De Gruyter, 2001 |g 24(2010), 1 vom: 15. März, Seite 35-42 |w (DE-627)NLEJ248235443 |w (DE-600)2157079-6 |x 1869-6147 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2010 |g number:1 |g day:15 |g month:03 |g pages:35-42 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1515/EQC.2009.35 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 24 |j 2010 |e 1 |b 15 |c 03 |h 35-42 |g 8 |
author_variant |
a h r r ahr ahrr g r m b grm grmb m k mk |
---|---|
matchkey_str |
article:18696147:2010----::oesetodsrthzrrtfntoit |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1515/EQC.2009.35 doi artikel_Grundlieferung.pp (DE-627)NLEJ246833416 DE-627 ger DE-627 rakwb Roknabadi, A. H. Rezaei verfasserin aut Some Aspects of Discrete Hazard Rate Function in Telescopic Families Walter de Gruyter GmbH & Co. KG 2010 8 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Heldermann Verlag In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. Walter de Gruyter Online Zeitschriften Extended exponential distribution reversed hazard rate second hazard rate mean residual life Borzadaran, G. R. Mohtashami verfasserin aut Khorashadizadeh, M. verfasserin aut Enthalten in Economic quality control Berlin : De Gruyter, 2001 24(2010), 1 vom: 15. März, Seite 35-42 (DE-627)NLEJ248235443 (DE-600)2157079-6 1869-6147 nnns volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 https://doi.org/10.1515/EQC.2009.35 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 24 2010 1 15 03 35-42 8 |
spelling |
10.1515/EQC.2009.35 doi artikel_Grundlieferung.pp (DE-627)NLEJ246833416 DE-627 ger DE-627 rakwb Roknabadi, A. H. Rezaei verfasserin aut Some Aspects of Discrete Hazard Rate Function in Telescopic Families Walter de Gruyter GmbH & Co. KG 2010 8 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Heldermann Verlag In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. Walter de Gruyter Online Zeitschriften Extended exponential distribution reversed hazard rate second hazard rate mean residual life Borzadaran, G. R. Mohtashami verfasserin aut Khorashadizadeh, M. verfasserin aut Enthalten in Economic quality control Berlin : De Gruyter, 2001 24(2010), 1 vom: 15. März, Seite 35-42 (DE-627)NLEJ248235443 (DE-600)2157079-6 1869-6147 nnns volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 https://doi.org/10.1515/EQC.2009.35 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 24 2010 1 15 03 35-42 8 |
allfields_unstemmed |
10.1515/EQC.2009.35 doi artikel_Grundlieferung.pp (DE-627)NLEJ246833416 DE-627 ger DE-627 rakwb Roknabadi, A. H. Rezaei verfasserin aut Some Aspects of Discrete Hazard Rate Function in Telescopic Families Walter de Gruyter GmbH & Co. KG 2010 8 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Heldermann Verlag In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. Walter de Gruyter Online Zeitschriften Extended exponential distribution reversed hazard rate second hazard rate mean residual life Borzadaran, G. R. Mohtashami verfasserin aut Khorashadizadeh, M. verfasserin aut Enthalten in Economic quality control Berlin : De Gruyter, 2001 24(2010), 1 vom: 15. März, Seite 35-42 (DE-627)NLEJ248235443 (DE-600)2157079-6 1869-6147 nnns volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 https://doi.org/10.1515/EQC.2009.35 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 24 2010 1 15 03 35-42 8 |
allfieldsGer |
10.1515/EQC.2009.35 doi artikel_Grundlieferung.pp (DE-627)NLEJ246833416 DE-627 ger DE-627 rakwb Roknabadi, A. H. Rezaei verfasserin aut Some Aspects of Discrete Hazard Rate Function in Telescopic Families Walter de Gruyter GmbH & Co. KG 2010 8 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Heldermann Verlag In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. Walter de Gruyter Online Zeitschriften Extended exponential distribution reversed hazard rate second hazard rate mean residual life Borzadaran, G. R. Mohtashami verfasserin aut Khorashadizadeh, M. verfasserin aut Enthalten in Economic quality control Berlin : De Gruyter, 2001 24(2010), 1 vom: 15. März, Seite 35-42 (DE-627)NLEJ248235443 (DE-600)2157079-6 1869-6147 nnns volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 https://doi.org/10.1515/EQC.2009.35 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 24 2010 1 15 03 35-42 8 |
allfieldsSound |
10.1515/EQC.2009.35 doi artikel_Grundlieferung.pp (DE-627)NLEJ246833416 DE-627 ger DE-627 rakwb Roknabadi, A. H. Rezaei verfasserin aut Some Aspects of Discrete Hazard Rate Function in Telescopic Families Walter de Gruyter GmbH & Co. KG 2010 8 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Heldermann Verlag In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. Walter de Gruyter Online Zeitschriften Extended exponential distribution reversed hazard rate second hazard rate mean residual life Borzadaran, G. R. Mohtashami verfasserin aut Khorashadizadeh, M. verfasserin aut Enthalten in Economic quality control Berlin : De Gruyter, 2001 24(2010), 1 vom: 15. März, Seite 35-42 (DE-627)NLEJ248235443 (DE-600)2157079-6 1869-6147 nnns volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 https://doi.org/10.1515/EQC.2009.35 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 24 2010 1 15 03 35-42 8 |
source |
Enthalten in Economic quality control 24(2010), 1 vom: 15. März, Seite 35-42 volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 |
sourceStr |
Enthalten in Economic quality control 24(2010), 1 vom: 15. März, Seite 35-42 volume:24 year:2010 number:1 day:15 month:03 pages:35-42 extent:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Extended exponential distribution reversed hazard rate second hazard rate mean residual life |
isfreeaccess_bool |
false |
container_title |
Economic quality control |
authorswithroles_txt_mv |
Roknabadi, A. H. Rezaei @@aut@@ Borzadaran, G. R. Mohtashami @@aut@@ Khorashadizadeh, M. @@aut@@ |
publishDateDaySort_date |
2010-03-15T00:00:00Z |
hierarchy_top_id |
NLEJ248235443 |
id |
NLEJ246833416 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246833416</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820024616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2010 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/EQC.2009.35</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246833416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roknabadi, A. H. Rezaei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Aspects of Discrete Hazard Rate Function in Telescopic Families</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Heldermann Verlag</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended exponential distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reversed hazard rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second hazard rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean residual life</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borzadaran, G. R. Mohtashami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khorashadizadeh, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Economic quality control</subfield><subfield code="d">Berlin : De Gruyter, 2001</subfield><subfield code="g">24(2010), 1 vom: 15. März, Seite 35-42</subfield><subfield code="w">(DE-627)NLEJ248235443</subfield><subfield code="w">(DE-600)2157079-6</subfield><subfield code="x">1869-6147</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:35-42</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/EQC.2009.35</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield><subfield code="h">35-42</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Roknabadi, A. H. Rezaei |
spellingShingle |
Roknabadi, A. H. Rezaei misc Extended exponential distribution misc reversed hazard rate misc second hazard rate misc mean residual life Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
authorStr |
Roknabadi, A. H. Rezaei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248235443 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1869-6147 |
topic_title |
Some Aspects of Discrete Hazard Rate Function in Telescopic Families Extended exponential distribution reversed hazard rate second hazard rate mean residual life |
publisher |
Walter de Gruyter GmbH & Co. KG |
publisherStr |
Walter de Gruyter GmbH & Co. KG |
topic |
misc Extended exponential distribution misc reversed hazard rate misc second hazard rate misc mean residual life |
topic_unstemmed |
misc Extended exponential distribution misc reversed hazard rate misc second hazard rate misc mean residual life |
topic_browse |
misc Extended exponential distribution misc reversed hazard rate misc second hazard rate misc mean residual life |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Economic quality control |
hierarchy_parent_id |
NLEJ248235443 |
hierarchy_top_title |
Economic quality control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248235443 (DE-600)2157079-6 |
title |
Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
ctrlnum |
(DE-627)NLEJ246833416 |
title_full |
Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
author_sort |
Roknabadi, A. H. Rezaei |
journal |
Economic quality control |
journalStr |
Economic quality control |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
35 |
author_browse |
Roknabadi, A. H. Rezaei Borzadaran, G. R. Mohtashami Khorashadizadeh, M. |
container_volume |
24 |
physical |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Roknabadi, A. H. Rezaei |
doi_str_mv |
10.1515/EQC.2009.35 |
author2-role |
verfasserin |
title_sort |
some aspects of discrete hazard rate function in telescopic families |
title_auth |
Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
abstract |
In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. © Heldermann Verlag |
abstractGer |
In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. © Heldermann Verlag |
abstract_unstemmed |
In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented. © Heldermann Verlag |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
1 |
title_short |
Some Aspects of Discrete Hazard Rate Function in Telescopic Families |
url |
https://doi.org/10.1515/EQC.2009.35 |
remote_bool |
true |
author2 |
Borzadaran, G. R. Mohtashami Khorashadizadeh, M. |
author2Str |
Borzadaran, G. R. Mohtashami Khorashadizadeh, M. |
ppnlink |
NLEJ248235443 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/EQC.2009.35 |
up_date |
2024-07-06T09:25:01.157Z |
_version_ |
1803821148963602432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ246833416</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820024616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2010 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/EQC.2009.35</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ246833416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roknabadi, A. H. Rezaei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Aspects of Discrete Hazard Rate Function in Telescopic Families</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Heldermann Verlag</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper some reliability concepts in the telescopic family of distributions are compared. The telescopic family is named after the telescopic series in mathematics and represents an interesting class of discrete life time distributions. The telescopic family is introduced and also some conditions being equivalent to the IFR property are presented.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended exponential distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reversed hazard rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second hazard rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean residual life</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borzadaran, G. R. Mohtashami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khorashadizadeh, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Economic quality control</subfield><subfield code="d">Berlin : De Gruyter, 2001</subfield><subfield code="g">24(2010), 1 vom: 15. März, Seite 35-42</subfield><subfield code="w">(DE-627)NLEJ248235443</subfield><subfield code="w">(DE-600)2157079-6</subfield><subfield code="x">1869-6147</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:35-42</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/EQC.2009.35</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield><subfield code="h">35-42</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.401038 |