On the intersection of subgroups in free groups: Echelon subgroups are inert
A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set...
Ausführliche Beschreibung
Autor*in: |
Rosenmann, Amnon [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH ; 2013 |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Groups, complexity, cryptology - Lemgo : Heldermann, 2009, 5(2013), 2 vom: 11. Okt., Seite 211-221 |
Übergeordnetes Werk: |
volume:5 ; year:2013 ; number:2 ; day:11 ; month:10 ; pages:211-221 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1515/gcc-2013-0013 |
---|
Katalog-ID: |
NLEJ24688245X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ24688245X | ||
003 | DE-627 | ||
005 | 20220820024740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2013 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/gcc-2013-0013 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ24688245X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Rosenmann, Amnon |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the intersection of subgroups in free groups: Echelon subgroups are inert |
264 | 1 | |b Walter de Gruyter GmbH |c 2013 | |
300 | |a 11 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a Free groups | |
650 | 4 | |a subgroups intersection | |
650 | 4 | |a echelon subgroups | |
650 | 4 | |a inert subgroups | |
650 | 4 | |a compressed subgroups | |
650 | 4 | |a 1-generator endomorphisms | |
650 | 4 | |a fixed subgroups of automorphisms | |
773 | 0 | 8 | |i Enthalten in |t Groups, complexity, cryptology |d Lemgo : Heldermann, 2009 |g 5(2013), 2 vom: 11. Okt., Seite 211-221 |w (DE-627)NLEJ248235575 |w (DE-600)2546373-1 |x 1869-6104 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2013 |g number:2 |g day:11 |g month:10 |g pages:211-221 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1515/gcc-2013-0013 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 5 |j 2013 |e 2 |b 11 |c 10 |h 211-221 |g 11 |
author_variant |
a r ar |
---|---|
matchkey_str |
article:18696104:2013----::nhitretoosbrusnrerusceos |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1515/gcc-2013-0013 doi artikel_Grundlieferung.pp (DE-627)NLEJ24688245X DE-627 ger DE-627 rakwb Rosenmann, Amnon verfasserin aut On the intersection of subgroups in free groups: Echelon subgroups are inert Walter de Gruyter GmbH 2013 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. Walter de Gruyter Online Zeitschriften Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms Enthalten in Groups, complexity, cryptology Lemgo : Heldermann, 2009 5(2013), 2 vom: 11. Okt., Seite 211-221 (DE-627)NLEJ248235575 (DE-600)2546373-1 1869-6104 nnns volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 https://doi.org/10.1515/gcc-2013-0013 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 5 2013 2 11 10 211-221 11 |
spelling |
10.1515/gcc-2013-0013 doi artikel_Grundlieferung.pp (DE-627)NLEJ24688245X DE-627 ger DE-627 rakwb Rosenmann, Amnon verfasserin aut On the intersection of subgroups in free groups: Echelon subgroups are inert Walter de Gruyter GmbH 2013 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. Walter de Gruyter Online Zeitschriften Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms Enthalten in Groups, complexity, cryptology Lemgo : Heldermann, 2009 5(2013), 2 vom: 11. Okt., Seite 211-221 (DE-627)NLEJ248235575 (DE-600)2546373-1 1869-6104 nnns volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 https://doi.org/10.1515/gcc-2013-0013 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 5 2013 2 11 10 211-221 11 |
allfields_unstemmed |
10.1515/gcc-2013-0013 doi artikel_Grundlieferung.pp (DE-627)NLEJ24688245X DE-627 ger DE-627 rakwb Rosenmann, Amnon verfasserin aut On the intersection of subgroups in free groups: Echelon subgroups are inert Walter de Gruyter GmbH 2013 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. Walter de Gruyter Online Zeitschriften Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms Enthalten in Groups, complexity, cryptology Lemgo : Heldermann, 2009 5(2013), 2 vom: 11. Okt., Seite 211-221 (DE-627)NLEJ248235575 (DE-600)2546373-1 1869-6104 nnns volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 https://doi.org/10.1515/gcc-2013-0013 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 5 2013 2 11 10 211-221 11 |
allfieldsGer |
10.1515/gcc-2013-0013 doi artikel_Grundlieferung.pp (DE-627)NLEJ24688245X DE-627 ger DE-627 rakwb Rosenmann, Amnon verfasserin aut On the intersection of subgroups in free groups: Echelon subgroups are inert Walter de Gruyter GmbH 2013 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. Walter de Gruyter Online Zeitschriften Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms Enthalten in Groups, complexity, cryptology Lemgo : Heldermann, 2009 5(2013), 2 vom: 11. Okt., Seite 211-221 (DE-627)NLEJ248235575 (DE-600)2546373-1 1869-6104 nnns volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 https://doi.org/10.1515/gcc-2013-0013 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 5 2013 2 11 10 211-221 11 |
allfieldsSound |
10.1515/gcc-2013-0013 doi artikel_Grundlieferung.pp (DE-627)NLEJ24688245X DE-627 ger DE-627 rakwb Rosenmann, Amnon verfasserin aut On the intersection of subgroups in free groups: Echelon subgroups are inert Walter de Gruyter GmbH 2013 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. Walter de Gruyter Online Zeitschriften Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms Enthalten in Groups, complexity, cryptology Lemgo : Heldermann, 2009 5(2013), 2 vom: 11. Okt., Seite 211-221 (DE-627)NLEJ248235575 (DE-600)2546373-1 1869-6104 nnns volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 https://doi.org/10.1515/gcc-2013-0013 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 5 2013 2 11 10 211-221 11 |
source |
Enthalten in Groups, complexity, cryptology 5(2013), 2 vom: 11. Okt., Seite 211-221 volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 |
sourceStr |
Enthalten in Groups, complexity, cryptology 5(2013), 2 vom: 11. Okt., Seite 211-221 volume:5 year:2013 number:2 day:11 month:10 pages:211-221 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms |
isfreeaccess_bool |
false |
container_title |
Groups, complexity, cryptology |
authorswithroles_txt_mv |
Rosenmann, Amnon @@aut@@ |
publishDateDaySort_date |
2013-10-11T00:00:00Z |
hierarchy_top_id |
NLEJ248235575 |
id |
NLEJ24688245X |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ24688245X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820024740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/gcc-2013-0013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ24688245X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosenmann, Amnon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the intersection of subgroups in free groups: Echelon subgroups are inert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subgroups intersection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">echelon subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inert subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressed subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-generator endomorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed subgroups of automorphisms</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Groups, complexity, cryptology</subfield><subfield code="d">Lemgo : Heldermann, 2009</subfield><subfield code="g">5(2013), 2 vom: 11. Okt., Seite 211-221</subfield><subfield code="w">(DE-627)NLEJ248235575</subfield><subfield code="w">(DE-600)2546373-1</subfield><subfield code="x">1869-6104</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:11</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:211-221</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/gcc-2013-0013</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">11</subfield><subfield code="c">10</subfield><subfield code="h">211-221</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Rosenmann, Amnon |
spellingShingle |
Rosenmann, Amnon misc Free groups misc subgroups intersection misc echelon subgroups misc inert subgroups misc compressed subgroups misc 1-generator endomorphisms misc fixed subgroups of automorphisms On the intersection of subgroups in free groups: Echelon subgroups are inert |
authorStr |
Rosenmann, Amnon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248235575 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1869-6104 |
topic_title |
On the intersection of subgroups in free groups: Echelon subgroups are inert Free groups subgroups intersection echelon subgroups inert subgroups compressed subgroups 1-generator endomorphisms fixed subgroups of automorphisms |
publisher |
Walter de Gruyter GmbH |
publisherStr |
Walter de Gruyter GmbH |
topic |
misc Free groups misc subgroups intersection misc echelon subgroups misc inert subgroups misc compressed subgroups misc 1-generator endomorphisms misc fixed subgroups of automorphisms |
topic_unstemmed |
misc Free groups misc subgroups intersection misc echelon subgroups misc inert subgroups misc compressed subgroups misc 1-generator endomorphisms misc fixed subgroups of automorphisms |
topic_browse |
misc Free groups misc subgroups intersection misc echelon subgroups misc inert subgroups misc compressed subgroups misc 1-generator endomorphisms misc fixed subgroups of automorphisms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Groups, complexity, cryptology |
hierarchy_parent_id |
NLEJ248235575 |
hierarchy_top_title |
Groups, complexity, cryptology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248235575 (DE-600)2546373-1 |
title |
On the intersection of subgroups in free groups: Echelon subgroups are inert |
ctrlnum |
(DE-627)NLEJ24688245X |
title_full |
On the intersection of subgroups in free groups: Echelon subgroups are inert |
author_sort |
Rosenmann, Amnon |
journal |
Groups, complexity, cryptology |
journalStr |
Groups, complexity, cryptology |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
211 |
author_browse |
Rosenmann, Amnon |
container_volume |
5 |
physical |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Rosenmann, Amnon |
doi_str_mv |
10.1515/gcc-2013-0013 |
title_sort |
on the intersection of subgroups in free groups: echelon subgroups are inert |
title_auth |
On the intersection of subgroups in free groups: Echelon subgroups are inert |
abstract |
A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. |
abstractGer |
A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. |
abstract_unstemmed |
A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
2 |
title_short |
On the intersection of subgroups in free groups: Echelon subgroups are inert |
url |
https://doi.org/10.1515/gcc-2013-0013 |
remote_bool |
true |
ppnlink |
NLEJ248235575 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/gcc-2013-0013 |
up_date |
2024-07-06T09:30:34.034Z |
_version_ |
1803821498011484160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ24688245X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820024740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/gcc-2013-0013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ24688245X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosenmann, Amnon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the intersection of subgroups in free groups: Echelon subgroups are inert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A subgroup H of a free group F is called inert in F if for every .In this paper we expand the known families of inert subgroups.We show that the inertia property holds for 1-generator endomorphisms.Equivalently, echelon subgroups in free groups are inert.An echelon subgroup is defined through a set of generators that are in echelon form with respect to some ordered basis of the free group, and may be seen as a generalization of a free factor.For example, the fixed subgroups of automorphisms of finitely generated free groups are echelon subgroups.The proofs follow mostly a graph-theoretic or combinatorial approach.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subgroups intersection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">echelon subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inert subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressed subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-generator endomorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed subgroups of automorphisms</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Groups, complexity, cryptology</subfield><subfield code="d">Lemgo : Heldermann, 2009</subfield><subfield code="g">5(2013), 2 vom: 11. Okt., Seite 211-221</subfield><subfield code="w">(DE-627)NLEJ248235575</subfield><subfield code="w">(DE-600)2546373-1</subfield><subfield code="x">1869-6104</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:11</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:211-221</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/gcc-2013-0013</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">11</subfield><subfield code="c">10</subfield><subfield code="h">211-221</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.401575 |