On the Problem of Molluzzo for the Modulus 4
We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2...
Ausführliche Beschreibung
Autor*in: |
Chappelon, Jonathan [verfasserIn] Eliahou, Shalom [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH & Co. KG ; 2012 |
---|
Schlagwörter: |
---|
Umfang: |
17 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Integers - Berlin [u.a.] : de Gruyter, 2009, 12(2012), 4 vom: 01. Aug., Seite 723-739 |
Übergeordnetes Werk: |
volume:12 ; year:2012 ; number:4 ; day:01 ; month:08 ; pages:723-739 ; extent:17 |
Links: |
---|
DOI / URN: |
10.1515/integers-2012-0001 |
---|
Katalog-ID: |
NLEJ247027618 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ247027618 | ||
003 | DE-627 | ||
005 | 20220820025520.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2012 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/integers-2012-0001 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ247027618 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Chappelon, Jonathan |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Problem of Molluzzo for the Modulus 4 |
264 | 1 | |b Walter de Gruyter GmbH & Co. KG |c 2012 | |
300 | |a 17 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a Molluzzo's Problem | |
650 | 4 | |a Steinhaus Triangles | |
650 | 4 | |a Balanced Triangles | |
650 | 4 | |a Multisets | |
650 | 4 | |a Pascal's Rule | |
700 | 1 | |a Eliahou, Shalom |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Integers |d Berlin [u.a.] : de Gruyter, 2009 |g 12(2012), 4 vom: 01. Aug., Seite 723-739 |w (DE-627)NLEJ248235834 |w (DE-600)2502663-X |x 1867-0652 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2012 |g number:4 |g day:01 |g month:08 |g pages:723-739 |g extent:17 |
856 | 4 | 0 | |u https://doi.org/10.1515/integers-2012-0001 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 12 |j 2012 |e 4 |b 01 |c 08 |h 723-739 |g 17 |
author_variant |
j c jc s e se |
---|---|
matchkey_str |
article:18670652:2012----::nhpolmfolzoot |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1515/integers-2012-0001 doi artikel_Grundlieferung.pp (DE-627)NLEJ247027618 DE-627 ger DE-627 rakwb Chappelon, Jonathan verfasserin aut On the Problem of Molluzzo for the Modulus 4 Walter de Gruyter GmbH & Co. KG 2012 17 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. Walter de Gruyter Online Zeitschriften Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule Eliahou, Shalom verfasserin aut Enthalten in Integers Berlin [u.a.] : de Gruyter, 2009 12(2012), 4 vom: 01. Aug., Seite 723-739 (DE-627)NLEJ248235834 (DE-600)2502663-X 1867-0652 nnns volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 https://doi.org/10.1515/integers-2012-0001 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 12 2012 4 01 08 723-739 17 |
spelling |
10.1515/integers-2012-0001 doi artikel_Grundlieferung.pp (DE-627)NLEJ247027618 DE-627 ger DE-627 rakwb Chappelon, Jonathan verfasserin aut On the Problem of Molluzzo for the Modulus 4 Walter de Gruyter GmbH & Co. KG 2012 17 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. Walter de Gruyter Online Zeitschriften Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule Eliahou, Shalom verfasserin aut Enthalten in Integers Berlin [u.a.] : de Gruyter, 2009 12(2012), 4 vom: 01. Aug., Seite 723-739 (DE-627)NLEJ248235834 (DE-600)2502663-X 1867-0652 nnns volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 https://doi.org/10.1515/integers-2012-0001 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 12 2012 4 01 08 723-739 17 |
allfields_unstemmed |
10.1515/integers-2012-0001 doi artikel_Grundlieferung.pp (DE-627)NLEJ247027618 DE-627 ger DE-627 rakwb Chappelon, Jonathan verfasserin aut On the Problem of Molluzzo for the Modulus 4 Walter de Gruyter GmbH & Co. KG 2012 17 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. Walter de Gruyter Online Zeitschriften Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule Eliahou, Shalom verfasserin aut Enthalten in Integers Berlin [u.a.] : de Gruyter, 2009 12(2012), 4 vom: 01. Aug., Seite 723-739 (DE-627)NLEJ248235834 (DE-600)2502663-X 1867-0652 nnns volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 https://doi.org/10.1515/integers-2012-0001 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 12 2012 4 01 08 723-739 17 |
allfieldsGer |
10.1515/integers-2012-0001 doi artikel_Grundlieferung.pp (DE-627)NLEJ247027618 DE-627 ger DE-627 rakwb Chappelon, Jonathan verfasserin aut On the Problem of Molluzzo for the Modulus 4 Walter de Gruyter GmbH & Co. KG 2012 17 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. Walter de Gruyter Online Zeitschriften Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule Eliahou, Shalom verfasserin aut Enthalten in Integers Berlin [u.a.] : de Gruyter, 2009 12(2012), 4 vom: 01. Aug., Seite 723-739 (DE-627)NLEJ248235834 (DE-600)2502663-X 1867-0652 nnns volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 https://doi.org/10.1515/integers-2012-0001 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 12 2012 4 01 08 723-739 17 |
allfieldsSound |
10.1515/integers-2012-0001 doi artikel_Grundlieferung.pp (DE-627)NLEJ247027618 DE-627 ger DE-627 rakwb Chappelon, Jonathan verfasserin aut On the Problem of Molluzzo for the Modulus 4 Walter de Gruyter GmbH & Co. KG 2012 17 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. Walter de Gruyter Online Zeitschriften Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule Eliahou, Shalom verfasserin aut Enthalten in Integers Berlin [u.a.] : de Gruyter, 2009 12(2012), 4 vom: 01. Aug., Seite 723-739 (DE-627)NLEJ248235834 (DE-600)2502663-X 1867-0652 nnns volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 https://doi.org/10.1515/integers-2012-0001 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 12 2012 4 01 08 723-739 17 |
source |
Enthalten in Integers 12(2012), 4 vom: 01. Aug., Seite 723-739 volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 |
sourceStr |
Enthalten in Integers 12(2012), 4 vom: 01. Aug., Seite 723-739 volume:12 year:2012 number:4 day:01 month:08 pages:723-739 extent:17 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule |
isfreeaccess_bool |
false |
container_title |
Integers |
authorswithroles_txt_mv |
Chappelon, Jonathan @@aut@@ Eliahou, Shalom @@aut@@ |
publishDateDaySort_date |
2012-08-01T00:00:00Z |
hierarchy_top_id |
NLEJ248235834 |
id |
NLEJ247027618 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247027618</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820025520.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2012 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/integers-2012-0001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247027618</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chappelon, Jonathan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Problem of Molluzzo for the Modulus 4</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molluzzo's Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steinhaus Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balanced Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal's Rule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eliahou, Shalom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integers</subfield><subfield code="d">Berlin [u.a.] : de Gruyter, 2009</subfield><subfield code="g">12(2012), 4 vom: 01. Aug., Seite 723-739</subfield><subfield code="w">(DE-627)NLEJ248235834</subfield><subfield code="w">(DE-600)2502663-X</subfield><subfield code="x">1867-0652</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:723-739</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/integers-2012-0001</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">08</subfield><subfield code="h">723-739</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Chappelon, Jonathan |
spellingShingle |
Chappelon, Jonathan misc Molluzzo's Problem misc Steinhaus Triangles misc Balanced Triangles misc Multisets misc Pascal's Rule On the Problem of Molluzzo for the Modulus 4 |
authorStr |
Chappelon, Jonathan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248235834 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1867-0652 |
topic_title |
On the Problem of Molluzzo for the Modulus 4 Molluzzo's Problem Steinhaus Triangles Balanced Triangles Multisets Pascal's Rule |
publisher |
Walter de Gruyter GmbH & Co. KG |
publisherStr |
Walter de Gruyter GmbH & Co. KG |
topic |
misc Molluzzo's Problem misc Steinhaus Triangles misc Balanced Triangles misc Multisets misc Pascal's Rule |
topic_unstemmed |
misc Molluzzo's Problem misc Steinhaus Triangles misc Balanced Triangles misc Multisets misc Pascal's Rule |
topic_browse |
misc Molluzzo's Problem misc Steinhaus Triangles misc Balanced Triangles misc Multisets misc Pascal's Rule |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Integers |
hierarchy_parent_id |
NLEJ248235834 |
hierarchy_top_title |
Integers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248235834 (DE-600)2502663-X |
title |
On the Problem of Molluzzo for the Modulus 4 |
ctrlnum |
(DE-627)NLEJ247027618 |
title_full |
On the Problem of Molluzzo for the Modulus 4 |
author_sort |
Chappelon, Jonathan |
journal |
Integers |
journalStr |
Integers |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
723 |
author_browse |
Chappelon, Jonathan Eliahou, Shalom |
container_volume |
12 |
physical |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Chappelon, Jonathan |
doi_str_mv |
10.1515/integers-2012-0001 |
author2-role |
verfasserin |
title_sort |
on the problem of molluzzo for the modulus 4 |
title_auth |
On the Problem of Molluzzo for the Modulus 4 |
abstract |
We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. |
abstractGer |
We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. |
abstract_unstemmed |
We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
4 |
title_short |
On the Problem of Molluzzo for the Modulus 4 |
url |
https://doi.org/10.1515/integers-2012-0001 |
remote_bool |
true |
author2 |
Eliahou, Shalom |
author2Str |
Eliahou, Shalom |
ppnlink |
NLEJ248235834 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/integers-2012-0001 |
up_date |
2024-07-06T09:48:21.610Z |
_version_ |
1803822617445007360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247027618</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820025520.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2012 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/integers-2012-0001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247027618</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chappelon, Jonathan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Problem of Molluzzo for the Modulus 4</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We solve the currently smallest open case in the 1976 problem of Molluzzo on , namely the case . This amounts to constructing, for all positive integers n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0, 1, 2, 3 with equal multiplicities.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molluzzo's Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steinhaus Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balanced Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal's Rule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eliahou, Shalom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integers</subfield><subfield code="d">Berlin [u.a.] : de Gruyter, 2009</subfield><subfield code="g">12(2012), 4 vom: 01. Aug., Seite 723-739</subfield><subfield code="w">(DE-627)NLEJ248235834</subfield><subfield code="w">(DE-600)2502663-X</subfield><subfield code="x">1867-0652</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:723-739</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/integers-2012-0001</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">08</subfield><subfield code="h">723-739</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
score |
7.4020615 |