On triple factorizations of finite groups
Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper...
Ausführliche Beschreibung
Autor*in: |
Alavi, S. Hassan [verfasserIn] Praeger, Cheryl E. [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH & Co. KG ; 2010 |
---|
Umfang: |
20 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Journal of group theory - Berlin : de Gruyter, 1998, 14(2010), 3 vom: 13. Okt., Seite 341-360 |
Übergeordnetes Werk: |
volume:14 ; year:2010 ; number:3 ; day:13 ; month:10 ; pages:341-360 ; extent:20 |
Links: |
---|
DOI / URN: |
10.1515/jgt.2010.052 |
---|
Katalog-ID: |
NLEJ247080896 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ247080896 | ||
003 | DE-627 | ||
005 | 20220820030046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2010 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/jgt.2010.052 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ247080896 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Alavi, S. Hassan |e verfasserin |4 aut | |
245 | 1 | 0 | |a On triple factorizations of finite groups |
264 | 1 | |b Walter de Gruyter GmbH & Co. KG |c 2010 | |
300 | |a 20 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
700 | 1 | |a Praeger, Cheryl E. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of group theory |d Berlin : de Gruyter, 1998 |g 14(2010), 3 vom: 13. Okt., Seite 341-360 |w (DE-627)NLEJ248236075 |w (DE-600)1492030-X |x 1435-4446 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2010 |g number:3 |g day:13 |g month:10 |g pages:341-360 |g extent:20 |
856 | 4 | 0 | |u https://doi.org/10.1515/jgt.2010.052 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 14 |j 2010 |e 3 |b 13 |c 10 |h 341-360 |g 20 |
author_variant |
s h a sh sha c e p ce cep |
---|---|
matchkey_str |
article:14354446:2010----::nrpeatrztosfi |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1515/jgt.2010.052 doi artikel_Grundlieferung.pp (DE-627)NLEJ247080896 DE-627 ger DE-627 rakwb Alavi, S. Hassan verfasserin aut On triple factorizations of finite groups Walter de Gruyter GmbH & Co. KG 2010 20 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. Walter de Gruyter Online Zeitschriften Praeger, Cheryl E. verfasserin aut Enthalten in Journal of group theory Berlin : de Gruyter, 1998 14(2010), 3 vom: 13. Okt., Seite 341-360 (DE-627)NLEJ248236075 (DE-600)1492030-X 1435-4446 nnns volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 https://doi.org/10.1515/jgt.2010.052 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2010 3 13 10 341-360 20 |
spelling |
10.1515/jgt.2010.052 doi artikel_Grundlieferung.pp (DE-627)NLEJ247080896 DE-627 ger DE-627 rakwb Alavi, S. Hassan verfasserin aut On triple factorizations of finite groups Walter de Gruyter GmbH & Co. KG 2010 20 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. Walter de Gruyter Online Zeitschriften Praeger, Cheryl E. verfasserin aut Enthalten in Journal of group theory Berlin : de Gruyter, 1998 14(2010), 3 vom: 13. Okt., Seite 341-360 (DE-627)NLEJ248236075 (DE-600)1492030-X 1435-4446 nnns volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 https://doi.org/10.1515/jgt.2010.052 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2010 3 13 10 341-360 20 |
allfields_unstemmed |
10.1515/jgt.2010.052 doi artikel_Grundlieferung.pp (DE-627)NLEJ247080896 DE-627 ger DE-627 rakwb Alavi, S. Hassan verfasserin aut On triple factorizations of finite groups Walter de Gruyter GmbH & Co. KG 2010 20 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. Walter de Gruyter Online Zeitschriften Praeger, Cheryl E. verfasserin aut Enthalten in Journal of group theory Berlin : de Gruyter, 1998 14(2010), 3 vom: 13. Okt., Seite 341-360 (DE-627)NLEJ248236075 (DE-600)1492030-X 1435-4446 nnns volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 https://doi.org/10.1515/jgt.2010.052 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2010 3 13 10 341-360 20 |
allfieldsGer |
10.1515/jgt.2010.052 doi artikel_Grundlieferung.pp (DE-627)NLEJ247080896 DE-627 ger DE-627 rakwb Alavi, S. Hassan verfasserin aut On triple factorizations of finite groups Walter de Gruyter GmbH & Co. KG 2010 20 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. Walter de Gruyter Online Zeitschriften Praeger, Cheryl E. verfasserin aut Enthalten in Journal of group theory Berlin : de Gruyter, 1998 14(2010), 3 vom: 13. Okt., Seite 341-360 (DE-627)NLEJ248236075 (DE-600)1492030-X 1435-4446 nnns volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 https://doi.org/10.1515/jgt.2010.052 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2010 3 13 10 341-360 20 |
allfieldsSound |
10.1515/jgt.2010.052 doi artikel_Grundlieferung.pp (DE-627)NLEJ247080896 DE-627 ger DE-627 rakwb Alavi, S. Hassan verfasserin aut On triple factorizations of finite groups Walter de Gruyter GmbH & Co. KG 2010 20 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. Walter de Gruyter Online Zeitschriften Praeger, Cheryl E. verfasserin aut Enthalten in Journal of group theory Berlin : de Gruyter, 1998 14(2010), 3 vom: 13. Okt., Seite 341-360 (DE-627)NLEJ248236075 (DE-600)1492030-X 1435-4446 nnns volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 https://doi.org/10.1515/jgt.2010.052 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 14 2010 3 13 10 341-360 20 |
source |
Enthalten in Journal of group theory 14(2010), 3 vom: 13. Okt., Seite 341-360 volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 |
sourceStr |
Enthalten in Journal of group theory 14(2010), 3 vom: 13. Okt., Seite 341-360 volume:14 year:2010 number:3 day:13 month:10 pages:341-360 extent:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Journal of group theory |
authorswithroles_txt_mv |
Alavi, S. Hassan @@aut@@ Praeger, Cheryl E. @@aut@@ |
publishDateDaySort_date |
2010-10-13T00:00:00Z |
hierarchy_top_id |
NLEJ248236075 |
id |
NLEJ247080896 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247080896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820030046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2010 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jgt.2010.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247080896</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alavi, S. Hassan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On triple factorizations of finite groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of group theory</subfield><subfield code="d">Berlin : de Gruyter, 1998</subfield><subfield code="g">14(2010), 3 vom: 13. Okt., Seite 341-360</subfield><subfield code="w">(DE-627)NLEJ248236075</subfield><subfield code="w">(DE-600)1492030-X</subfield><subfield code="x">1435-4446</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:13</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:341-360</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jgt.2010.052</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">13</subfield><subfield code="c">10</subfield><subfield code="h">341-360</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Alavi, S. Hassan |
spellingShingle |
Alavi, S. Hassan On triple factorizations of finite groups |
authorStr |
Alavi, S. Hassan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248236075 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-4446 |
topic_title |
On triple factorizations of finite groups |
publisher |
Walter de Gruyter GmbH & Co. KG |
publisherStr |
Walter de Gruyter GmbH & Co. KG |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of group theory |
hierarchy_parent_id |
NLEJ248236075 |
hierarchy_top_title |
Journal of group theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248236075 (DE-600)1492030-X |
title |
On triple factorizations of finite groups |
ctrlnum |
(DE-627)NLEJ247080896 |
title_full |
On triple factorizations of finite groups |
author_sort |
Alavi, S. Hassan |
journal |
Journal of group theory |
journalStr |
Journal of group theory |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
341 |
author_browse |
Alavi, S. Hassan Praeger, Cheryl E. |
container_volume |
14 |
physical |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Alavi, S. Hassan |
doi_str_mv |
10.1515/jgt.2010.052 |
author2-role |
verfasserin |
title_sort |
on triple factorizations of finite groups |
title_auth |
On triple factorizations of finite groups |
abstract |
Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. |
abstractGer |
Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. |
abstract_unstemmed |
Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
3 |
title_short |
On triple factorizations of finite groups |
url |
https://doi.org/10.1515/jgt.2010.052 |
remote_bool |
true |
author2 |
Praeger, Cheryl E. |
author2Str |
Praeger, Cheryl E. |
ppnlink |
NLEJ248236075 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/jgt.2010.052 |
up_date |
2024-07-06T09:54:10.598Z |
_version_ |
1803822983385448448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247080896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820030046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2010 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jgt.2010.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247080896</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alavi, S. Hassan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On triple factorizations of finite groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triple factorizations of groups G of the form G = ABA, for proper subgroups A and B, are fundamental in the study of Lie type groups, as well as in geometry. They correspond to flag-transitive point-line incidence geometries in which each pair of points is incident with at least one line. This paper introduces and develops a general framework for studying triple factorizations of this form for finite groups, especially nondegenerate ones where G ≠ AB. We identify two necessary and suffcient conditions for subgroups A, B to satisfy G = ABA, in terms of the G-actions on the A-cosets and the B-cosets. This leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp precisely for the point-line incidence geometries of flag-transitive projective planes. We study in particular the case where G acts imprimitively on the A-cosets, inducing a permutation group that is naturally embedded in a wreath product G0 ≀ G1. This gives rise to triple factorizations for G0, G1 and G0 ≀ G1, respectively. We present a rationale for further study of triple factorizations G = ABA in which A is maximal in G, and both A and B are core-free.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of group theory</subfield><subfield code="d">Berlin : de Gruyter, 1998</subfield><subfield code="g">14(2010), 3 vom: 13. Okt., Seite 341-360</subfield><subfield code="w">(DE-627)NLEJ248236075</subfield><subfield code="w">(DE-600)1492030-X</subfield><subfield code="x">1435-4446</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:13</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:341-360</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jgt.2010.052</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">13</subfield><subfield code="c">10</subfield><subfield code="h">341-360</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
score |
7.3998547 |