Intrinsic small time estimates for distribution densities of Lévy processes
We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asy...
Ausführliche Beschreibung
Autor*in: |
Knopova, Victoria [verfasserIn] Kulik, Alexei [verfasserIn] |
---|
Format: |
E-Artikel |
---|
Erschienen: |
Walter de Gruyter GmbH ; 2013 |
---|
Schlagwörter: |
---|
Umfang: |
24 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
Enthalten in: Random operators and stochastic equations - Berlin [u.a.] : de Gruyter, 1993, 21(2013), 4 vom: 24. Okt., Seite 321-344 |
Übergeordnetes Werk: |
volume:21 ; year:2013 ; number:4 ; day:24 ; month:10 ; pages:321-344 ; extent:24 |
Links: |
---|
DOI / URN: |
10.1515/rose-2013-0015 |
---|
Katalog-ID: |
NLEJ247543578 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ247543578 | ||
003 | DE-627 | ||
005 | 20220820032831.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2013 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/rose-2013-0015 |2 doi | |
028 | 5 | 2 | |a artikel_Grundlieferung.pp |
035 | |a (DE-627)NLEJ247543578 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
100 | 1 | |a Knopova, Victoria |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intrinsic small time estimates for distribution densities of Lévy processes |
264 | 1 | |b Walter de Gruyter GmbH |c 2013 | |
300 | |a 24 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a Transition probability density | |
650 | 4 | |a Laplace method | |
650 | 4 | |a transition density estimates | |
650 | 4 | |a Lévy process | |
700 | 1 | |a Kulik, Alexei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Random operators and stochastic equations |d Berlin [u.a.] : de Gruyter, 1993 |g 21(2013), 4 vom: 24. Okt., Seite 321-344 |w (DE-627)NLEJ248236768 |w (DE-600)2041909-0 |x 1569-397X |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2013 |g number:4 |g day:24 |g month:10 |g pages:321-344 |g extent:24 |
856 | 4 | 0 | |u https://doi.org/10.1515/rose-2013-0015 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 21 |j 2013 |e 4 |b 24 |c 10 |h 321-344 |g 24 |
author_variant |
v k vk a k ak |
---|---|
matchkey_str |
article:1569397X:2013----::nrnisaliesiaefritiuinest |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1515/rose-2013-0015 doi artikel_Grundlieferung.pp (DE-627)NLEJ247543578 DE-627 ger DE-627 rakwb Knopova, Victoria verfasserin aut Intrinsic small time estimates for distribution densities of Lévy processes Walter de Gruyter GmbH 2013 24 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. Walter de Gruyter Online Zeitschriften Transition probability density Laplace method transition density estimates Lévy process Kulik, Alexei verfasserin aut Enthalten in Random operators and stochastic equations Berlin [u.a.] : de Gruyter, 1993 21(2013), 4 vom: 24. Okt., Seite 321-344 (DE-627)NLEJ248236768 (DE-600)2041909-0 1569-397X nnns volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 https://doi.org/10.1515/rose-2013-0015 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 21 2013 4 24 10 321-344 24 |
spelling |
10.1515/rose-2013-0015 doi artikel_Grundlieferung.pp (DE-627)NLEJ247543578 DE-627 ger DE-627 rakwb Knopova, Victoria verfasserin aut Intrinsic small time estimates for distribution densities of Lévy processes Walter de Gruyter GmbH 2013 24 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. Walter de Gruyter Online Zeitschriften Transition probability density Laplace method transition density estimates Lévy process Kulik, Alexei verfasserin aut Enthalten in Random operators and stochastic equations Berlin [u.a.] : de Gruyter, 1993 21(2013), 4 vom: 24. Okt., Seite 321-344 (DE-627)NLEJ248236768 (DE-600)2041909-0 1569-397X nnns volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 https://doi.org/10.1515/rose-2013-0015 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 21 2013 4 24 10 321-344 24 |
allfields_unstemmed |
10.1515/rose-2013-0015 doi artikel_Grundlieferung.pp (DE-627)NLEJ247543578 DE-627 ger DE-627 rakwb Knopova, Victoria verfasserin aut Intrinsic small time estimates for distribution densities of Lévy processes Walter de Gruyter GmbH 2013 24 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. Walter de Gruyter Online Zeitschriften Transition probability density Laplace method transition density estimates Lévy process Kulik, Alexei verfasserin aut Enthalten in Random operators and stochastic equations Berlin [u.a.] : de Gruyter, 1993 21(2013), 4 vom: 24. Okt., Seite 321-344 (DE-627)NLEJ248236768 (DE-600)2041909-0 1569-397X nnns volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 https://doi.org/10.1515/rose-2013-0015 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 21 2013 4 24 10 321-344 24 |
allfieldsGer |
10.1515/rose-2013-0015 doi artikel_Grundlieferung.pp (DE-627)NLEJ247543578 DE-627 ger DE-627 rakwb Knopova, Victoria verfasserin aut Intrinsic small time estimates for distribution densities of Lévy processes Walter de Gruyter GmbH 2013 24 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. Walter de Gruyter Online Zeitschriften Transition probability density Laplace method transition density estimates Lévy process Kulik, Alexei verfasserin aut Enthalten in Random operators and stochastic equations Berlin [u.a.] : de Gruyter, 1993 21(2013), 4 vom: 24. Okt., Seite 321-344 (DE-627)NLEJ248236768 (DE-600)2041909-0 1569-397X nnns volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 https://doi.org/10.1515/rose-2013-0015 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 21 2013 4 24 10 321-344 24 |
allfieldsSound |
10.1515/rose-2013-0015 doi artikel_Grundlieferung.pp (DE-627)NLEJ247543578 DE-627 ger DE-627 rakwb Knopova, Victoria verfasserin aut Intrinsic small time estimates for distribution densities of Lévy processes Walter de Gruyter GmbH 2013 24 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. Walter de Gruyter Online Zeitschriften Transition probability density Laplace method transition density estimates Lévy process Kulik, Alexei verfasserin aut Enthalten in Random operators and stochastic equations Berlin [u.a.] : de Gruyter, 1993 21(2013), 4 vom: 24. Okt., Seite 321-344 (DE-627)NLEJ248236768 (DE-600)2041909-0 1569-397X nnns volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 https://doi.org/10.1515/rose-2013-0015 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 21 2013 4 24 10 321-344 24 |
source |
Enthalten in Random operators and stochastic equations 21(2013), 4 vom: 24. Okt., Seite 321-344 volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 |
sourceStr |
Enthalten in Random operators and stochastic equations 21(2013), 4 vom: 24. Okt., Seite 321-344 volume:21 year:2013 number:4 day:24 month:10 pages:321-344 extent:24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transition probability density Laplace method transition density estimates Lévy process |
isfreeaccess_bool |
false |
container_title |
Random operators and stochastic equations |
authorswithroles_txt_mv |
Knopova, Victoria @@aut@@ Kulik, Alexei @@aut@@ |
publishDateDaySort_date |
2013-10-24T00:00:00Z |
hierarchy_top_id |
NLEJ248236768 |
id |
NLEJ247543578 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247543578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820032831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/rose-2013-0015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247543578</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knopova, Victoria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intrinsic small time estimates for distribution densities of Lévy processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition probability density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transition density estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy process</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulik, Alexei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Random operators and stochastic equations</subfield><subfield code="d">Berlin [u.a.] : de Gruyter, 1993</subfield><subfield code="g">21(2013), 4 vom: 24. Okt., Seite 321-344</subfield><subfield code="w">(DE-627)NLEJ248236768</subfield><subfield code="w">(DE-600)2041909-0</subfield><subfield code="x">1569-397X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:321-344</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/rose-2013-0015</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">10</subfield><subfield code="h">321-344</subfield><subfield code="g">24</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
author |
Knopova, Victoria |
spellingShingle |
Knopova, Victoria misc Transition probability density misc Laplace method misc transition density estimates misc Lévy process Intrinsic small time estimates for distribution densities of Lévy processes |
authorStr |
Knopova, Victoria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248236768 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1569-397X |
topic_title |
Intrinsic small time estimates for distribution densities of Lévy processes Transition probability density Laplace method transition density estimates Lévy process |
publisher |
Walter de Gruyter GmbH |
publisherStr |
Walter de Gruyter GmbH |
topic |
misc Transition probability density misc Laplace method misc transition density estimates misc Lévy process |
topic_unstemmed |
misc Transition probability density misc Laplace method misc transition density estimates misc Lévy process |
topic_browse |
misc Transition probability density misc Laplace method misc transition density estimates misc Lévy process |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Random operators and stochastic equations |
hierarchy_parent_id |
NLEJ248236768 |
hierarchy_top_title |
Random operators and stochastic equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248236768 (DE-600)2041909-0 |
title |
Intrinsic small time estimates for distribution densities of Lévy processes |
ctrlnum |
(DE-627)NLEJ247543578 |
title_full |
Intrinsic small time estimates for distribution densities of Lévy processes |
author_sort |
Knopova, Victoria |
journal |
Random operators and stochastic equations |
journalStr |
Random operators and stochastic equations |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
321 |
author_browse |
Knopova, Victoria Kulik, Alexei |
container_volume |
21 |
physical |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Knopova, Victoria |
doi_str_mv |
10.1515/rose-2013-0015 |
author2-role |
verfasserin |
title_sort |
intrinsic small time estimates for distribution densities of lévy processes |
title_auth |
Intrinsic small time estimates for distribution densities of Lévy processes |
abstract |
We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. |
abstractGer |
We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. |
abstract_unstemmed |
We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
4 |
title_short |
Intrinsic small time estimates for distribution densities of Lévy processes |
url |
https://doi.org/10.1515/rose-2013-0015 |
remote_bool |
true |
author2 |
Kulik, Alexei |
author2Str |
Kulik, Alexei |
ppnlink |
NLEJ248236768 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/rose-2013-0015 |
up_date |
2024-07-06T10:45:01.100Z |
_version_ |
1803826182072827904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ247543578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220820032831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2013 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/rose-2013-0015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">artikel_Grundlieferung.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ247543578</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knopova, Victoria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intrinsic small time estimates for distribution densities of Lévy processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct intrinsic on- and off-diagonal upper and lower estimates for the transition probability density of a Lévy process in small time.By intrinsic we mean that such estimates reflect the structure of the characteristic exponent of the process. The technique used in the paper relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. We provide several examples, in particular, with rather irregular Lévy measure, to illustrate our results.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition probability density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transition density estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy process</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulik, Alexei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Random operators and stochastic equations</subfield><subfield code="d">Berlin [u.a.] : de Gruyter, 1993</subfield><subfield code="g">21(2013), 4 vom: 24. Okt., Seite 321-344</subfield><subfield code="w">(DE-627)NLEJ248236768</subfield><subfield code="w">(DE-600)2041909-0</subfield><subfield code="x">1569-397X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:321-344</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/rose-2013-0015</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">10</subfield><subfield code="h">321-344</subfield><subfield code="g">24</subfield></datafield></record></collection>
|
score |
7.4003973 |