Modelling the Spatial Distribution of Wind Energy Resources in Latvia
The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observa...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|
Erschienen: |
De Gruyter Open ; 2018 |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Reproduktion: |
Walter de Gruyter Online Zeitschriften |
---|---|
Übergeordnetes Werk: |
In: 0868-8257 - 54(2018), 6 vom: 24. Jan., Seite 10-20 |
Übergeordnetes Werk: |
In: 54(2018), 6 vom: 24. Jan., Seite 10-20 volume:54 ; year:2018 ; number:6 ; day:24 ; month:01 ; pages:10-20 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1515/lpts-2017-0037 |
---|
Katalog-ID: |
NLEJ248118625 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ248118625 | ||
003 | DE-627 | ||
005 | 20220814165950.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220814s2018 xx |||||o 00| ||und c | ||
024 | 7 | |a 10.1515/lpts-2017-0037 |2 doi | |
028 | 5 | 2 | |a articles2015-2020.pp |
035 | |a (DE-627)NLEJ248118625 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
245 | 1 | 0 | |a Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
264 | 1 | |b De Gruyter Open |c 2018 | |
300 | |a 11 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. | ||
533 | |f Walter de Gruyter Online Zeitschriften | ||
650 | 4 | |a wind speed | |
650 | 4 | |a wind energy | |
650 | 4 | |a measurements | |
650 | 4 | |a modelling | |
650 | 4 | |a ERA5 | |
700 | 1 | |a Aniskevich, S. |4 oth | |
700 | 1 | |a Bezrukovs, V. |4 oth | |
700 | 1 | |a Zandovskis, U. |4 oth | |
700 | 1 | |a Bezrukovs, D. |4 oth | |
773 | 0 | 8 | |i In |g 54(2018), 6 vom: 24. Jan., Seite 10-20 |x 0868-8257 |
773 | 1 | 8 | |g volume:54 |g year:2018 |g number:6 |g day:24 |g month:01 |g pages:10-20 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1515/lpts-2017-0037 |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-DGR | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 54 |j 2018 |e 6 |b 24 |c 1 |h 10-20 |g 11 |
matchkey_str |
article:08688257:2018----::oelnteptadsrbtoowneegr |
---|---|
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1515/lpts-2017-0037 doi articles2015-2020.pp (DE-627)NLEJ248118625 DE-627 ger DE-627 rakwb Modelling the Spatial Distribution of Wind Energy Resources in Latvia De Gruyter Open 2018 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. Walter de Gruyter Online Zeitschriften wind speed wind energy measurements modelling ERA5 Aniskevich, S. oth Bezrukovs, V. oth Zandovskis, U. oth Bezrukovs, D. oth In 54(2018), 6 vom: 24. Jan., Seite 10-20 0868-8257 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 https://doi.org/10.1515/lpts-2017-0037 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 54 2018 6 24 1 10-20 11 |
spelling |
10.1515/lpts-2017-0037 doi articles2015-2020.pp (DE-627)NLEJ248118625 DE-627 ger DE-627 rakwb Modelling the Spatial Distribution of Wind Energy Resources in Latvia De Gruyter Open 2018 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. Walter de Gruyter Online Zeitschriften wind speed wind energy measurements modelling ERA5 Aniskevich, S. oth Bezrukovs, V. oth Zandovskis, U. oth Bezrukovs, D. oth In 54(2018), 6 vom: 24. Jan., Seite 10-20 0868-8257 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 https://doi.org/10.1515/lpts-2017-0037 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 54 2018 6 24 1 10-20 11 |
allfields_unstemmed |
10.1515/lpts-2017-0037 doi articles2015-2020.pp (DE-627)NLEJ248118625 DE-627 ger DE-627 rakwb Modelling the Spatial Distribution of Wind Energy Resources in Latvia De Gruyter Open 2018 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. Walter de Gruyter Online Zeitschriften wind speed wind energy measurements modelling ERA5 Aniskevich, S. oth Bezrukovs, V. oth Zandovskis, U. oth Bezrukovs, D. oth In 54(2018), 6 vom: 24. Jan., Seite 10-20 0868-8257 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 https://doi.org/10.1515/lpts-2017-0037 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 54 2018 6 24 1 10-20 11 |
allfieldsGer |
10.1515/lpts-2017-0037 doi articles2015-2020.pp (DE-627)NLEJ248118625 DE-627 ger DE-627 rakwb Modelling the Spatial Distribution of Wind Energy Resources in Latvia De Gruyter Open 2018 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. Walter de Gruyter Online Zeitschriften wind speed wind energy measurements modelling ERA5 Aniskevich, S. oth Bezrukovs, V. oth Zandovskis, U. oth Bezrukovs, D. oth In 54(2018), 6 vom: 24. Jan., Seite 10-20 0868-8257 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 https://doi.org/10.1515/lpts-2017-0037 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 54 2018 6 24 1 10-20 11 |
allfieldsSound |
10.1515/lpts-2017-0037 doi articles2015-2020.pp (DE-627)NLEJ248118625 DE-627 ger DE-627 rakwb Modelling the Spatial Distribution of Wind Energy Resources in Latvia De Gruyter Open 2018 11 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. Walter de Gruyter Online Zeitschriften wind speed wind energy measurements modelling ERA5 Aniskevich, S. oth Bezrukovs, V. oth Zandovskis, U. oth Bezrukovs, D. oth In 54(2018), 6 vom: 24. Jan., Seite 10-20 0868-8257 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 https://doi.org/10.1515/lpts-2017-0037 Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE AR 54 2018 6 24 1 10-20 11 |
source |
In 54(2018), 6 vom: 24. Jan., Seite 10-20 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 |
sourceStr |
In 54(2018), 6 vom: 24. Jan., Seite 10-20 volume:54 year:2018 number:6 day:24 month:01 pages:10-20 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wind speed wind energy measurements modelling ERA5 |
isfreeaccess_bool |
false |
authorswithroles_txt_mv |
Aniskevich, S. @@oth@@ Bezrukovs, V. @@oth@@ Zandovskis, U. @@oth@@ Bezrukovs, D. @@oth@@ |
publishDateDaySort_date |
2018-01-24T00:00:00Z |
id |
NLEJ248118625 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248118625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220814165950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2018 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/lpts-2017-0037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">articles2015-2020.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248118625</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling the Spatial Distribution of Wind Energy Resources in Latvia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">De Gruyter Open</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ERA5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aniskevich, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezrukovs, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zandovskis, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezrukovs, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="g">54(2018), 6 vom: 24. Jan., Seite 10-20</subfield><subfield code="x">0868-8257</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">day:24</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:10-20</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/lpts-2017-0037</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="b">24</subfield><subfield code="c">1</subfield><subfield code="h">10-20</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
series2 |
Walter de Gruyter Online Zeitschriften |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0868-8257 |
topic_title |
Modelling the Spatial Distribution of Wind Energy Resources in Latvia wind speed wind energy measurements modelling ERA5 |
publisher |
De Gruyter Open |
publisherStr |
De Gruyter Open |
topic |
misc wind speed misc wind energy misc measurements misc modelling misc ERA5 |
spellingShingle |
misc wind speed misc wind energy misc measurements misc modelling misc ERA5 Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
topic_unstemmed |
misc wind speed misc wind energy misc measurements misc modelling misc ERA5 |
topic_browse |
misc wind speed misc wind energy misc measurements misc modelling misc ERA5 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
author2_variant |
s a sa v b vb u z uz d b db |
isfreeaccess_txt |
false |
title |
Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
ctrlnum |
(DE-627)NLEJ248118625 |
title_full |
Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
10 |
container_volume |
54 |
physical |
11 |
format_se |
Elektronische Aufsätze |
doi_str_mv |
10.1515/lpts-2017-0037 |
title_sort |
modelling the spatial distribution of wind energy resources in latvia |
title_auth |
Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
abstract |
The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. |
abstractGer |
The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. |
abstract_unstemmed |
The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils. |
collection_details |
GBV_USEFLAG_U ZDB-1-DGR GBV_NL_ARTICLE |
container_issue |
6 |
title_short |
Modelling the Spatial Distribution of Wind Energy Resources in Latvia |
url |
https://doi.org/10.1515/lpts-2017-0037 |
remote_bool |
true |
author2 |
Aniskevich, S. Bezrukovs, V. Zandovskis, U. Bezrukovs, D. |
author2Str |
Aniskevich, S. Bezrukovs, V. Zandovskis, U. Bezrukovs, D. |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1515/lpts-2017-0037 |
up_date |
2024-07-05T22:39:09.907Z |
_version_ |
1803780515332882432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248118625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220814165950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220814s2018 xx |||||o 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/lpts-2017-0037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">articles2015-2020.pp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248118625</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling the Spatial Distribution of Wind Energy Resources in Latvia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">De Gruyter Open</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">Walter de Gruyter Online Zeitschriften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ERA5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aniskevich, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezrukovs, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zandovskis, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezrukovs, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="g">54(2018), 6 vom: 24. Jan., Seite 10-20</subfield><subfield code="x">0868-8257</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">day:24</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:10-20</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/lpts-2017-0037</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-DGR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="b">24</subfield><subfield code="c">1</subfield><subfield code="h">10-20</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.402669 |