Electrostatic potential in a superconductor
The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poiss...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|
Erschienen: |
2002 |
---|
Umfang: |
Online-Ressource 18 |
---|
Reproduktion: |
APS Digital Backfile Archive 1893-2003 |
---|---|
Übergeordnetes Werk: |
Enthalten in: Physical review / B - College Park, Md. : APS, 1970, 65(2002), 14 |
Übergeordnetes Werk: |
volume:65 ; year:2002 ; number:14 ; extent:18 |
Links: |
---|
Katalog-ID: |
NLEJ248753592 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ248753592 | ||
003 | DE-627 | ||
005 | 20231114100110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231114s2002 xx |||||o 00| ||und c | ||
035 | |a (DE-627)NLEJ248753592 | ||
035 | |a (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
245 | 1 | 0 | |a Electrostatic potential in a superconductor |
264 | 1 | |c 2002 | |
300 | |a Online-Ressource | ||
300 | |a 18 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. | ||
533 | |f APS Digital Backfile Archive 1893-2003 | ||
700 | 1 | |a Lipavský, Pavel |4 oth | |
700 | 1 | |a Koláček, Jan |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review / B |d College Park, Md. : APS, 1970 |g 65(2002), 14 |h Online-Ressource |w (DE-627)NLEJ248237845 |w (DE-600)1473011-X |x 1550-235X |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2002 |g number:14 |g extent:18 |
856 | 4 | 0 | |u https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e |x Verlag |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-APS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 65 |j 2002 |e 14 |g 18 |
matchkey_str |
article:1550235X:2002----::lcrsaiptnilns |
---|---|
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e DE-627 ger DE-627 rakwb Electrostatic potential in a superconductor 2002 Online-Ressource 18 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. APS Digital Backfile Archive 1893-2003 Lipavský, Pavel oth Koláček, Jan oth Enthalten in Physical review / B College Park, Md. : APS, 1970 65(2002), 14 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:65 year:2002 number:14 extent:18 https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 65 2002 14 18 |
spelling |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e DE-627 ger DE-627 rakwb Electrostatic potential in a superconductor 2002 Online-Ressource 18 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. APS Digital Backfile Archive 1893-2003 Lipavský, Pavel oth Koláček, Jan oth Enthalten in Physical review / B College Park, Md. : APS, 1970 65(2002), 14 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:65 year:2002 number:14 extent:18 https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 65 2002 14 18 |
allfields_unstemmed |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e DE-627 ger DE-627 rakwb Electrostatic potential in a superconductor 2002 Online-Ressource 18 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. APS Digital Backfile Archive 1893-2003 Lipavský, Pavel oth Koláček, Jan oth Enthalten in Physical review / B College Park, Md. : APS, 1970 65(2002), 14 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:65 year:2002 number:14 extent:18 https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 65 2002 14 18 |
allfieldsGer |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e DE-627 ger DE-627 rakwb Electrostatic potential in a superconductor 2002 Online-Ressource 18 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. APS Digital Backfile Archive 1893-2003 Lipavský, Pavel oth Koláček, Jan oth Enthalten in Physical review / B College Park, Md. : APS, 1970 65(2002), 14 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:65 year:2002 number:14 extent:18 https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 65 2002 14 18 |
allfieldsSound |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e DE-627 ger DE-627 rakwb Electrostatic potential in a superconductor 2002 Online-Ressource 18 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. APS Digital Backfile Archive 1893-2003 Lipavský, Pavel oth Koláček, Jan oth Enthalten in Physical review / B College Park, Md. : APS, 1970 65(2002), 14 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:65 year:2002 number:14 extent:18 https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 65 2002 14 18 |
source |
Enthalten in Physical review / B 65(2002), 14 volume:65 year:2002 number:14 extent:18 |
sourceStr |
Enthalten in Physical review / B 65(2002), 14 volume:65 year:2002 number:14 extent:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Physical review / B |
authorswithroles_txt_mv |
Lipavský, Pavel @@oth@@ Koláček, Jan @@oth@@ |
publishDateDaySort_date |
2002-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ248237845 |
id |
NLEJ248753592 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248753592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231114100110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231114s2002 xx |||||o 00| ||und c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248753592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrostatic potential in a superconductor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">APS Digital Backfile Archive 1893-2003</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipavský, Pavel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review / B</subfield><subfield code="d">College Park, Md. : APS, 1970</subfield><subfield code="g">65(2002), 14</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ248237845</subfield><subfield code="w">(DE-600)1473011-X</subfield><subfield code="x">1550-235X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:14</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-APS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2002</subfield><subfield code="e">14</subfield><subfield code="g">18</subfield></datafield></record></collection>
|
series2 |
APS Digital Backfile Archive 1893-2003 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248237845 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1550-235X |
topic_title |
Electrostatic potential in a superconductor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
author2_variant |
p l pl j k jk |
hierarchy_parent_title |
Physical review / B |
hierarchy_parent_id |
NLEJ248237845 |
hierarchy_top_title |
Physical review / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248237845 (DE-600)1473011-X |
title |
Electrostatic potential in a superconductor |
spellingShingle |
Electrostatic potential in a superconductor |
ctrlnum |
(DE-627)NLEJ248753592 (DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e |
title_full |
Electrostatic potential in a superconductor |
journal |
Physical review / B |
journalStr |
Physical review / B |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_volume |
65 |
physical |
Online-Ressource 18 |
format_se |
Elektronische Aufsätze |
title_sort |
electrostatic potential in a superconductor |
title_auth |
Electrostatic potential in a superconductor |
abstract |
The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. |
abstractGer |
The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. |
abstract_unstemmed |
The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed. |
collection_details |
GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE |
container_issue |
14 |
title_short |
Electrostatic potential in a superconductor |
url |
https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e |
remote_bool |
true |
author2 |
Lipavský, Pavel Koláček, Jan |
author2Str |
Lipavský, Pavel Koláček, Jan |
ppnlink |
NLEJ248237845 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-06T01:17:53.227Z |
_version_ |
1803790501258723328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248753592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231114100110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231114s2002 xx |||||o 00| ||und c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248753592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-601)aps:f0bc0f5d79882ba44f0215fa87a2527bbda17e2e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrostatic potential in a superconductor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation for the vector potential, the Schrödinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">APS Digital Backfile Archive 1893-2003</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipavský, Pavel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review / B</subfield><subfield code="d">College Park, Md. : APS, 1970</subfield><subfield code="g">65(2002), 14</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ248237845</subfield><subfield code="w">(DE-600)1473011-X</subfield><subfield code="x">1550-235X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:14</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/suchen/id/aps%3Af0bc0f5d79882ba44f0215fa87a2527bbda17e2e</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-APS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2002</subfield><subfield code="e">14</subfield><subfield code="g">18</subfield></datafield></record></collection>
|
score |
7.4004107 |