Quasiparticle spectrum of d-wave superconductors in the mixed state
The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dir...
Ausführliche Beschreibung
Autor*in: |
---|
Format: |
E-Artikel |
---|
Erschienen: |
2000 |
---|
Umfang: |
Online-Ressource 14 |
---|
Reproduktion: |
APS Digital Backfile Archive 1893-2003 |
---|---|
Übergeordnetes Werk: |
Enthalten in: Physical review / B - College Park, Md. : APS, 1970, 62(2000), 5, Seite 3488-3501 |
Übergeordnetes Werk: |
volume:62 ; year:2000 ; number:5 ; pages:3488-3501 ; extent:14 |
Links: |
---|
Katalog-ID: |
NLEJ248812572 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ248812572 | ||
003 | DE-627 | ||
005 | 20231114100232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231114s2000 xx |||||o 00| ||und c | ||
035 | |a (DE-627)NLEJ248812572 | ||
035 | |a (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
245 | 1 | 0 | |a Quasiparticle spectrum of d-wave superconductors in the mixed state |
264 | 1 | |c 2000 | |
300 | |a Online-Ressource | ||
300 | |a 14 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. | ||
533 | |f APS Digital Backfile Archive 1893-2003 | ||
700 | 1 | |a Marinelli, Luca |4 oth | |
700 | 1 | |a Halperin, B. I. |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review / B |d College Park, Md. : APS, 1970 |g 62(2000), 5, Seite 3488-3501 |h Online-Ressource |w (DE-627)NLEJ248237845 |w (DE-600)1473011-X |x 1550-235X |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2000 |g number:5 |g pages:3488-3501 |g extent:14 |
856 | 4 | 0 | |u https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b |x Verlag |z Deutschlandweit zugänglich |
912 | |a GBV_USEFLAG_U | ||
912 | |a ZDB-1-APS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 62 |j 2000 |e 5 |h 3488-3501 |g 14 |
matchkey_str |
article:1550235X:2000----::usprilsetuodaeuecnutr |
---|---|
hierarchy_sort_str |
2000 |
publishDate |
2000 |
allfields |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b DE-627 ger DE-627 rakwb Quasiparticle spectrum of d-wave superconductors in the mixed state 2000 Online-Ressource 14 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. APS Digital Backfile Archive 1893-2003 Marinelli, Luca oth Halperin, B. I. oth Enthalten in Physical review / B College Park, Md. : APS, 1970 62(2000), 5, Seite 3488-3501 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:62 year:2000 number:5 pages:3488-3501 extent:14 https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 62 2000 5 3488-3501 14 |
spelling |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b DE-627 ger DE-627 rakwb Quasiparticle spectrum of d-wave superconductors in the mixed state 2000 Online-Ressource 14 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. APS Digital Backfile Archive 1893-2003 Marinelli, Luca oth Halperin, B. I. oth Enthalten in Physical review / B College Park, Md. : APS, 1970 62(2000), 5, Seite 3488-3501 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:62 year:2000 number:5 pages:3488-3501 extent:14 https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 62 2000 5 3488-3501 14 |
allfields_unstemmed |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b DE-627 ger DE-627 rakwb Quasiparticle spectrum of d-wave superconductors in the mixed state 2000 Online-Ressource 14 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. APS Digital Backfile Archive 1893-2003 Marinelli, Luca oth Halperin, B. I. oth Enthalten in Physical review / B College Park, Md. : APS, 1970 62(2000), 5, Seite 3488-3501 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:62 year:2000 number:5 pages:3488-3501 extent:14 https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 62 2000 5 3488-3501 14 |
allfieldsGer |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b DE-627 ger DE-627 rakwb Quasiparticle spectrum of d-wave superconductors in the mixed state 2000 Online-Ressource 14 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. APS Digital Backfile Archive 1893-2003 Marinelli, Luca oth Halperin, B. I. oth Enthalten in Physical review / B College Park, Md. : APS, 1970 62(2000), 5, Seite 3488-3501 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:62 year:2000 number:5 pages:3488-3501 extent:14 https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 62 2000 5 3488-3501 14 |
allfieldsSound |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b DE-627 ger DE-627 rakwb Quasiparticle spectrum of d-wave superconductors in the mixed state 2000 Online-Ressource 14 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. APS Digital Backfile Archive 1893-2003 Marinelli, Luca oth Halperin, B. I. oth Enthalten in Physical review / B College Park, Md. : APS, 1970 62(2000), 5, Seite 3488-3501 Online-Ressource (DE-627)NLEJ248237845 (DE-600)1473011-X 1550-235X nnns volume:62 year:2000 number:5 pages:3488-3501 extent:14 https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b Verlag Deutschlandweit zugänglich GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE AR 62 2000 5 3488-3501 14 |
source |
Enthalten in Physical review / B 62(2000), 5, Seite 3488-3501 volume:62 year:2000 number:5 pages:3488-3501 extent:14 |
sourceStr |
Enthalten in Physical review / B 62(2000), 5, Seite 3488-3501 volume:62 year:2000 number:5 pages:3488-3501 extent:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Physical review / B |
authorswithroles_txt_mv |
Marinelli, Luca @@oth@@ Halperin, B. I. @@oth@@ |
publishDateDaySort_date |
2000-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ248237845 |
id |
NLEJ248812572 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248812572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231114100232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231114s2000 xx |||||o 00| ||und c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248812572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasiparticle spectrum of d-wave superconductors in the mixed state</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">APS Digital Backfile Archive 1893-2003</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinelli, Luca</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halperin, B. I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review / B</subfield><subfield code="d">College Park, Md. : APS, 1970</subfield><subfield code="g">62(2000), 5, Seite 3488-3501</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ248237845</subfield><subfield code="w">(DE-600)1473011-X</subfield><subfield code="x">1550-235X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:3488-3501</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-APS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2000</subfield><subfield code="e">5</subfield><subfield code="h">3488-3501</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
series2 |
APS Digital Backfile Archive 1893-2003 |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ248237845 |
format |
electronic Article |
delete_txt_mv |
keep |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1550-235X |
topic_title |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
author2_variant |
l m lm b i h bi bih |
hierarchy_parent_title |
Physical review / B |
hierarchy_parent_id |
NLEJ248237845 |
hierarchy_top_title |
Physical review / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ248237845 (DE-600)1473011-X |
title |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
spellingShingle |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
ctrlnum |
(DE-627)NLEJ248812572 (DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b |
title_full |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
journal |
Physical review / B |
journalStr |
Physical review / B |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
3488 |
container_volume |
62 |
physical |
Online-Ressource 14 |
format_se |
Elektronische Aufsätze |
title_sort |
quasiparticle spectrum of d-wave superconductors in the mixed state |
title_auth |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
abstract |
The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. |
abstractGer |
The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. |
abstract_unstemmed |
The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy. |
collection_details |
GBV_USEFLAG_U ZDB-1-APS GBV_NL_ARTICLE |
container_issue |
5 |
title_short |
Quasiparticle spectrum of d-wave superconductors in the mixed state |
url |
https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b |
remote_bool |
true |
author2 |
Marinelli, Luca Halperin, B. I. |
author2Str |
Marinelli, Luca Halperin, B. I. |
ppnlink |
NLEJ248237845 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-06T01:34:57.687Z |
_version_ |
1803791575481843712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">NLEJ248812572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231114100232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231114s2000 xx |||||o 00| ||und c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ248812572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-601)aps:64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasiparticle spectrum of d-wave superconductors in the mixed state</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, Hc1≪H≪Hc2, is studied both analytically and numerically using the linearized Bogoliubov–de Gennes equation. We consider various values of the “anisotropy ratio” vF/vΔ for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum, and lead to a finite density of states at zero energy.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="f">APS Digital Backfile Archive 1893-2003</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinelli, Luca</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halperin, B. I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review / B</subfield><subfield code="d">College Park, Md. : APS, 1970</subfield><subfield code="g">62(2000), 5, Seite 3488-3501</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ248237845</subfield><subfield code="w">(DE-600)1473011-X</subfield><subfield code="x">1550-235X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:3488-3501</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tib.eu/de/suchen/id/aps%3A64d2cd5d251a0b43cb3b55938ecd4096e1fd1e7b</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-APS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2000</subfield><subfield code="e">5</subfield><subfield code="h">3488-3501</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.402323 |