Parallelization of Enhanced Firework Algorithm using MapReduce
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algo...
Ausführliche Beschreibung
Autor*in: |
Ludwig, Simone A. [verfasserIn] Dawar, Deepak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Umfang: |
1 Online-Ressource |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of swarm intelligence research - Hershey, Pa : IGI Global, 2010, 6(2015), 2, Seite 32-51 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2015 ; number:2 ; pages:32-51 |
Links: |
---|
DOI / URN: |
10.4018/IJSIR.2015040102 |
---|
Katalog-ID: |
NLEJ251831795 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLEJ251831795 | ||
003 | DE-627 | ||
005 | 20231205144013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231128s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4018/IJSIR.2015040102 |2 doi | |
035 | |a (DE-627)NLEJ251831795 | ||
035 | |a (VZGNL)10.4018/IJSIR.2015040102 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ludwig, Simone A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parallelization of Enhanced Firework Algorithm using MapReduce |
264 | 1 | |c 2015 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions | ||
653 | |a Fireworks |a Map |a Reduce |a Scalability |a Swarm Intelligence | ||
700 | 1 | |a Dawar, Deepak |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of swarm intelligence research |d Hershey, Pa : IGI Global, 2010 |g 6(2015), 2, Seite 32-51 |h Online-Ressource |w (DE-627)NLEJ244419493 |w (DE-600)2703801-4 |x 1947-9271 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2015 |g number:2 |g pages:32-51 |
856 | 4 | 0 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 |m X:IGIG |x Verlag |z Deutschlandweit zugänglich |
856 | 4 | 2 | |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true |3 Abstract |
912 | |a ZDB-1-GIS | ||
912 | |a GBV_NL_ARTICLE | ||
951 | |a AR | ||
952 | |d 6 |j 2015 |e 2 |h 32-51 |
author_variant |
s a l sa sal d d dd |
---|---|
matchkey_str |
article:19479271:2015----::aallztooehnefrwragrtm |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.4018/IJSIR.2015040102 doi (DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 DE-627 ger DE-627 rakwb eng Ludwig, Simone A. verfasserin aut Parallelization of Enhanced Firework Algorithm using MapReduce 2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions Fireworks Map Reduce Scalability Swarm Intelligence Dawar, Deepak verfasserin aut Enthalten in International journal of swarm intelligence research Hershey, Pa : IGI Global, 2010 6(2015), 2, Seite 32-51 Online-Ressource (DE-627)NLEJ244419493 (DE-600)2703801-4 1947-9271 nnns volume:6 year:2015 number:2 pages:32-51 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true Abstract ZDB-1-GIS GBV_NL_ARTICLE AR 6 2015 2 32-51 |
spelling |
10.4018/IJSIR.2015040102 doi (DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 DE-627 ger DE-627 rakwb eng Ludwig, Simone A. verfasserin aut Parallelization of Enhanced Firework Algorithm using MapReduce 2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions Fireworks Map Reduce Scalability Swarm Intelligence Dawar, Deepak verfasserin aut Enthalten in International journal of swarm intelligence research Hershey, Pa : IGI Global, 2010 6(2015), 2, Seite 32-51 Online-Ressource (DE-627)NLEJ244419493 (DE-600)2703801-4 1947-9271 nnns volume:6 year:2015 number:2 pages:32-51 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true Abstract ZDB-1-GIS GBV_NL_ARTICLE AR 6 2015 2 32-51 |
allfields_unstemmed |
10.4018/IJSIR.2015040102 doi (DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 DE-627 ger DE-627 rakwb eng Ludwig, Simone A. verfasserin aut Parallelization of Enhanced Firework Algorithm using MapReduce 2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions Fireworks Map Reduce Scalability Swarm Intelligence Dawar, Deepak verfasserin aut Enthalten in International journal of swarm intelligence research Hershey, Pa : IGI Global, 2010 6(2015), 2, Seite 32-51 Online-Ressource (DE-627)NLEJ244419493 (DE-600)2703801-4 1947-9271 nnns volume:6 year:2015 number:2 pages:32-51 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true Abstract ZDB-1-GIS GBV_NL_ARTICLE AR 6 2015 2 32-51 |
allfieldsGer |
10.4018/IJSIR.2015040102 doi (DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 DE-627 ger DE-627 rakwb eng Ludwig, Simone A. verfasserin aut Parallelization of Enhanced Firework Algorithm using MapReduce 2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions Fireworks Map Reduce Scalability Swarm Intelligence Dawar, Deepak verfasserin aut Enthalten in International journal of swarm intelligence research Hershey, Pa : IGI Global, 2010 6(2015), 2, Seite 32-51 Online-Ressource (DE-627)NLEJ244419493 (DE-600)2703801-4 1947-9271 nnns volume:6 year:2015 number:2 pages:32-51 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true Abstract ZDB-1-GIS GBV_NL_ARTICLE AR 6 2015 2 32-51 |
allfieldsSound |
10.4018/IJSIR.2015040102 doi (DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 DE-627 ger DE-627 rakwb eng Ludwig, Simone A. verfasserin aut Parallelization of Enhanced Firework Algorithm using MapReduce 2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions Fireworks Map Reduce Scalability Swarm Intelligence Dawar, Deepak verfasserin aut Enthalten in International journal of swarm intelligence research Hershey, Pa : IGI Global, 2010 6(2015), 2, Seite 32-51 Online-Ressource (DE-627)NLEJ244419493 (DE-600)2703801-4 1947-9271 nnns volume:6 year:2015 number:2 pages:32-51 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 X:IGIG Verlag Deutschlandweit zugänglich http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true Abstract ZDB-1-GIS GBV_NL_ARTICLE AR 6 2015 2 32-51 |
language |
English |
source |
Enthalten in International journal of swarm intelligence research 6(2015), 2, Seite 32-51 volume:6 year:2015 number:2 pages:32-51 |
sourceStr |
Enthalten in International journal of swarm intelligence research 6(2015), 2, Seite 32-51 volume:6 year:2015 number:2 pages:32-51 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fireworks Map Reduce Scalability Swarm Intelligence |
isfreeaccess_bool |
false |
container_title |
International journal of swarm intelligence research |
authorswithroles_txt_mv |
Ludwig, Simone A. @@aut@@ Dawar, Deepak @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
NLEJ244419493 |
id |
NLEJ251831795 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ251831795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205144013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231128s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/IJSIR.2015040102</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ251831795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/IJSIR.2015040102</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ludwig, Simone A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallelization of Enhanced Firework Algorithm using MapReduce</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fireworks</subfield><subfield code="a">Map</subfield><subfield code="a">Reduce</subfield><subfield code="a">Scalability</subfield><subfield code="a">Swarm Intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dawar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of swarm intelligence research</subfield><subfield code="d">Hershey, Pa : IGI Global, 2010</subfield><subfield code="g">6(2015), 2, Seite 32-51</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244419493</subfield><subfield code="w">(DE-600)2703801-4</subfield><subfield code="x">1947-9271</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:32-51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">32-51</subfield></datafield></record></collection>
|
author |
Ludwig, Simone A. |
spellingShingle |
Ludwig, Simone A. misc Fireworks Parallelization of Enhanced Firework Algorithm using MapReduce |
authorStr |
Ludwig, Simone A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)NLEJ244419493 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
NL |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1947-9271 |
topic_title |
Parallelization of Enhanced Firework Algorithm using MapReduce |
topic |
misc Fireworks |
topic_unstemmed |
misc Fireworks |
topic_browse |
misc Fireworks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of swarm intelligence research |
hierarchy_parent_id |
NLEJ244419493 |
hierarchy_top_title |
International journal of swarm intelligence research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)NLEJ244419493 (DE-600)2703801-4 |
title |
Parallelization of Enhanced Firework Algorithm using MapReduce |
ctrlnum |
(DE-627)NLEJ251831795 (VZGNL)10.4018/IJSIR.2015040102 |
title_full |
Parallelization of Enhanced Firework Algorithm using MapReduce |
author_sort |
Ludwig, Simone A. |
journal |
International journal of swarm intelligence research |
journalStr |
International journal of swarm intelligence research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
32 |
author_browse |
Ludwig, Simone A. Dawar, Deepak |
container_volume |
6 |
physical |
1 Online-Ressource |
format_se |
Elektronische Aufsätze |
author-letter |
Ludwig, Simone A. |
doi_str_mv |
10.4018/IJSIR.2015040102 |
author2-role |
verfasserin |
title_sort |
parallelization of enhanced firework algorithm using mapreduce |
title_auth |
Parallelization of Enhanced Firework Algorithm using MapReduce |
abstract |
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions |
abstractGer |
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions |
abstract_unstemmed |
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions |
collection_details |
ZDB-1-GIS GBV_NL_ARTICLE |
container_issue |
2 |
title_short |
Parallelization of Enhanced Firework Algorithm using MapReduce |
url |
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102 http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true |
remote_bool |
true |
author2 |
Dawar, Deepak |
author2Str |
Dawar, Deepak |
ppnlink |
NLEJ244419493 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.4018/IJSIR.2015040102 |
up_date |
2024-07-06T11:43:37.011Z |
_version_ |
1803829868769574912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">NLEJ251831795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205144013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231128s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/IJSIR.2015040102</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)NLEJ251831795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(VZGNL)10.4018/IJSIR.2015040102</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ludwig, Simone A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallelization of Enhanced Firework Algorithm using MapReduce</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fireworks</subfield><subfield code="a">Map</subfield><subfield code="a">Reduce</subfield><subfield code="a">Scalability</subfield><subfield code="a">Swarm Intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dawar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of swarm intelligence research</subfield><subfield code="d">Hershey, Pa : IGI Global, 2010</subfield><subfield code="g">6(2015), 2, Seite 32-51</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)NLEJ244419493</subfield><subfield code="w">(DE-600)2703801-4</subfield><subfield code="x">1947-9271</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:32-51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102</subfield><subfield code="m">X:IGIG</subfield><subfield code="x">Verlag</subfield><subfield code="z">Deutschlandweit zugänglich</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2015040102&buylink=true</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-GIS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_NL_ARTICLE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">32-51</subfield></datafield></record></collection>
|
score |
7.4012766 |